Math, asked by Anonymous, 8 hours ago



Don’t spam...

Otherwise your answers and ID both will be reported to a moderator. ​​

❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ

❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​​​​​​​

Attachments:

Answers

Answered by sajan6491
21

 \displaystyle \sf \red{ \int \frac{ {x}^{ \frac{x}{ lnx  } } }{ \sqrt{e} } \: dx }

 \displaystyle \sf \red{  = \int \frac{ {e}^{ \cancel{lnx}}  \cdot \frac{x}{2 \:    \cancel{lnx } } }{   {e}^{ \frac{x}{2} }  } \: dx }

 \displaystyle \sf \red{  = \int \frac{{ \cancel{e}^{  \cancel{\frac{x}{2}}}}}{   { \cancel{e}^{  \cancel{\frac{x}{2}}} }  } \: dx }

\displaystyle \sf \red{=\int 1 \:dx}

 \displaystyle \sf \red{  = X+C}

Answered by senboni123456
7

Step-by-step explanation:

We have,

  \displaystyle \tt \int \dfrac{x^{ \frac{x}{ \ln(x)} } }{ \sqrt{e} } \: dx

  \displaystyle  = \frac{1}{ \sqrt{e} }  \tt \int \: x^{ \displaystyle \tt x   \:  log_{x}(e)  } \: dx

  \displaystyle  = \frac{1}{ \sqrt{e} }  \tt \int \: x^{ \displaystyle \tt   \:  log_{x}(e ^{x} )  } \: dx

  \displaystyle  = \frac{1}{ \sqrt{e} }  \tt \int \: e ^{x}   \: dx

  \displaystyle  = \dfrac{e^{x} }{ \sqrt{e} }   + c

Similar questions