Math, asked by IamIronMan0, 10 days ago

Don't spam please !
Else I will report you and your account will be blocked by moderators . ​

Attachments:

Answers

Answered by Anonymous
36

Answer:

A) 1/2

Step-by-step explanation:

We need to evaluate the below infinite series

 \displaystyle \longrightarrow \sum \limits_{n = 1}^ \infty \dfrac{n}{3 \cdot5 \cdot7 ...(2 n + 1)}

Consider the nth term of the given series,

 \displaystyle  \implies T_n= \dfrac{n}{3 \cdot5 \cdot7 ...(2 n + 1)}

{ \displaystyle  \implies T_n= \frac{1}{2} \left[  \dfrac{2n}{3 \cdot5 \cdot7 ...(2 n + 1)} \right]}

{ \displaystyle  \implies T_n= \frac{1}{2} \left[  \dfrac{(2n + 1 ) - 1}{3 \cdot5 \cdot7 ...(2 n + 1)} \right]}

{ \displaystyle  \implies T_n= \frac{1}{2} \left[  \dfrac{(2n + 1 )}{3 \cdot5 \cdot7 ...(2 n + 1)}  -  \dfrac{1}{3 \cdot5 \cdot7 ...(2 n + 1)} \right]}

{ \displaystyle  \implies T_n= \frac{1}{2} \left[  \dfrac{(2n + 1 )}{3 \cdot5 \cdot7 ...(2n - 1) \cdot(2 n + 1)}  -  \dfrac{1}{3 \cdot5 \cdot7 ...(2 n + 1)} \right]}

{ \displaystyle  \implies T_n= \frac{1}{2} \left[  \dfrac{1}{3 \cdot5 \cdot7 ...(2n - 1)}  -  \dfrac{1}{3 \cdot5 \cdot7 ...(2 n + 1)} \right]}

Now the sum of the series is given

{\implies S_n =\lim\limits_{n\to\infty} (T_1+T_2+T_3+...+T_n)}

{\implies S_n =\lim\limits_{n\to\infty} \dfrac{1}{2} \left[\left\{\dfrac{1}1-\dfrac1{1.3}\right\}+\left\{\dfrac1{1.3}-\dfrac{1}{1.3.5}\right\}+...+\left\{\dfrac{1}{1.3.5...(2n-1)}-\dfrac{1}{1.3.5...(2n+1)}\right\}\right] }

{\implies S_n =\lim\limits_{n\to\infty} \dfrac{1}{2} \left[\left\{\dfrac{1}1 \cancel{-\dfrac1{1.3}}\right\}+\left\{ \cancel\dfrac1{1.3}- \cancel\dfrac{1}{1.3.5}\right\} \cancel{+...+}\left\{ \cancel\dfrac{1}{1.3.5...(2n-1)}-\dfrac{1}{1.3.5...(2n+1)}\right\}\right] }

{\implies S_n =\lim\limits_{n\to\infty} \dfrac{1}{2} \left[\left\{\dfrac{1}1 -\dfrac{1}{1.3.5...(2n+1)}\right\}\right] }

{\implies S_n =\dfrac{1}{2} \left[\left\{\dfrac{1}1 -\dfrac{1}{ \infty}\right\}\right] }

{\implies S_n =\dfrac{1}{2} \left[\left\{\dfrac{1}1 -0\right\}\right] }

{\implies S_n =\dfrac{1}{2} \left[1\right] }

{\implies S_n =\dfrac{1}{2} }

Therefore, the required answer is,

  \underline{\boxed{\sum \limits_{n = 1}^ \infty \dfrac{n}{3 \cdot5 \cdot7 ...(2 n + 1)} =  \frac{1}{2} }}

Visit similar question,

https://brainly.in/question/47010748

Answered by ayushmalik981
0

Answer:

hope it helps you dear

Attachments:
Similar questions