Math, asked by SHZ123, 2 days ago

Don't spam
if( \alpha  +  \beta )is \: not \: equel \: to \: zero(0) \:  \:and \:  \\   \sin \alpha  +  \sin \beta  = 2 \sin( \alpha  +  \beta  )  \: then \: prove \: that \\  \tan \frac{ \alpha }{2}  \tan  \frac{ \beta }{2}  =  \frac{1}{3}







Answers

Answered by TrustedAnswerer19
91

{\boxed{\boxed{\begin{array}{cc}\bf \: \to \:given \: that :  \\  \\  \alpha  +  \beta  \neq \: 0 \\  \\  \sf \: also \: given :  \\  \\  \rm \: sin \:  \alpha  + sin \:  \beta  = 2 \: sin( \alpha  +  \beta ) \\  \\  \red{ \underline{ \bf \: we \: have \: to \: prove : }} \\  \\  \rm \: tan \:  \frac{ \alpha }{2}.tan \:  \frac{ \beta }{2}  =  \frac{1}{3}  \end{array}}}}

{\boxed{\boxed{\begin{array}{cc} \red { \underline{\bf \: solution}} \\  \\  \rm \: sin \:  \alpha  +  \: sin \:  \beta  = 2 \: sin( \alpha  +  \beta ) \\  \\ \orange{{\boxed{\begin{array}{cc}\bf \: we \: know :  \\  \\  \to \:  \bf \: sin \: x + sin \: y = 2 \: sin \: ( \frac{x + y}{2}) . \: cos \: ( \frac{x - y}{2}  ) \\  \\  \rm \:  \to \: sin \: 2x = 2  \: sin \: x \: cos \: x \\  \therefore \:  \rm \: sin \: x = 2 \: sin \:  \frac{x}{2} . \: cos \:  \frac{x}{2} \end{array}}}}  \\  \pink{ \sf \: apply \: this} \\  \\  \rm  \implies \:  \cancel2 \: sin \: ( \frac{ \alpha  +  \beta }{2} ). cos \: ( \frac{ \alpha  -  \beta }{2}) = \cancel 2 \times 2 \: sin ( \frac{ \alpha  +  \beta }{2}  ).cos( \frac{ \alpha  +  \beta }{2} ) \\  \\  \rm   \implies \:sin(  \frac{ \alpha  +  \beta }{2} ) \{ cos( \frac{ \alpha  -   \beta }{2}   )- 2 \: cos( \frac{ \alpha  +  \beta }{2} ) \} = 0 \\  \end{array}}}}

{\boxed{\boxed{\begin{array}{cc}\sf \: since \:  \:  \alpha  +  \beta  \neq \: 0  \:  \:  \: sin( \frac{ \alpha +   \beta }{2})  \neq0 \\  \\  \\  \therefore \:  \rm \: cos( \frac{ \alpha  -  \beta }{2} ) - 2 \: cos( \frac{ \alpha  +  \beta }{2} ) = 0 \\  \\ \orange{{\boxed{\begin{array}{cc}\bf \: we \: know: \\  \\  \rm \:  \to \: cos(x  \pm y) = cos \: x \: cos \: y \mp \: sin \: x \: sin \: y\end{array}}}} \\  \pink{ \sf \: apply \: this} \\  \\  \rm   \implies \: cos \frac{ \alpha }{2}  .cos \frac{ \beta }{2}  + sin \frac{ \alpha }{2} .sin \frac{ \beta }{2}  - 2(cos \frac{ \alpha }{2} .cos \frac{ \beta }{2}  - sin \frac{ \alpha }{2}.sin \frac{ \beta }{2} ) = 0 \\  \\  \rm   \implies \:  3 \: sin \frac{ \alpha }{2} \: sin \frac{ \beta }{2}  =  cos \frac{  \alpha }{2} .cos \frac{ \beta }{2}  \\  \\  \rm   \implies \:  \frac{sin \frac{ \alpha }{2} .sin \frac{ \beta }{2} }{cos \frac{ \alpha }{2}.cos \frac{  \beta }{2}  }   =  \frac{1}{3}  \\  \\ \rm   \implies \: tan  \: \frac{ \alpha }{2} .tan \frac{ \beta }{2}  =  \frac{1}{3}  \\  \\  \therefore \: L.H.S = R.H.S\end{array}}}}

Similar questions