Math, asked by SHZ123, 10 days ago

Don't spam...
prove \: that \:  \\ 16 \cos \frac{2\pi}{15}  \cos\frac{4\pi}{15}   \cos \frac{8\pi}{15}  \cos \frac{14\pi}{15}  = 1




Answers

Answered by senboni123456
9

Step-by-step explanation:

We have,

  \tt{16 \: cos \bigg( \dfrac{2 \pi}{15} \bigg) \:cos \bigg( \dfrac{4 \pi}{15} \bigg) \:cos \bigg( \dfrac{8 \pi}{15} \bigg) \:cos \bigg( \dfrac{14 \pi}{15} \bigg) }

  \tt{ = \dfrac{ 16 \:  sin\bigg( \dfrac{2 \pi}{15} \bigg) \:  cos \bigg( \dfrac{2 \pi}{15} \bigg) \:cos \bigg( \dfrac{4 \pi}{15} \bigg) \:cos \bigg( \dfrac{8 \pi}{15} \bigg) \:cos \bigg( \dfrac{14 \pi}{15} \bigg) }{ sin \bigg( \dfrac{2 \pi}{15} \bigg) }}

  \tt{ = \dfrac{ 8 \cdot2 \:  sin\bigg( \dfrac{2 \pi}{15} \bigg) \:  cos \bigg( \dfrac{2 \pi}{15} \bigg) \cdot \: cos \bigg( \dfrac{4 \pi}{15} \bigg) \:cos \bigg( \dfrac{8 \pi}{15} \bigg) \:cos \bigg( \dfrac{14 \pi}{15} \bigg) }{ sin \bigg( \dfrac{2 \pi}{15} \bigg) }}

  \tt{ = \dfrac{ 8 \:  sin\bigg( \dfrac{4\pi}{15} \bigg) \: cos \bigg( \dfrac{4 \pi}{15} \bigg) \:cos \bigg( \dfrac{8 \pi}{15} \bigg) \:cos \bigg( \dfrac{14 \pi}{15} \bigg) }{ sin \bigg( \dfrac{2 \pi}{15} \bigg) }}

  \tt{ = \dfrac{ 4 \cdot2 \:  sin\bigg( \dfrac{4\pi}{15} \bigg) \: cos \bigg( \dfrac{4 \pi}{15} \bigg) \cdot \:cos \bigg( \dfrac{8 \pi}{15} \bigg) \:cos \bigg( \dfrac{14 \pi}{15} \bigg) }{ sin \bigg( \dfrac{2 \pi}{15} \bigg) }}

  \tt{ = \dfrac{ 4 \: sin\bigg( \dfrac{8\pi}{15} \bigg)  \:cos \bigg( \dfrac{8 \pi}{15} \bigg) \:cos \bigg( \dfrac{14 \pi}{15} \bigg) }{ sin \bigg( \dfrac{2 \pi}{15} \bigg) }}

  \tt{ = \dfrac{ 2 \cdot 2\: sin\bigg( \dfrac{8\pi}{15} \bigg)  \:cos \bigg( \dfrac{8 \pi}{15} \bigg)  \cdot\:cos \bigg( \dfrac{14 \pi}{15} \bigg) }{ sin \bigg( \dfrac{2 \pi}{15} \bigg) }}

  \tt{ = \dfrac{ 2 \:  sin\bigg( \dfrac{16\pi}{15} \bigg) \:cos \bigg( \dfrac{14 \pi}{15} \bigg) }{ sin \bigg( \dfrac{2 \pi}{15} \bigg) }}

  \tt{ = \dfrac{ 2 \:  sin\bigg( \pi +  \dfrac{\pi}{15} \bigg) \:cos \bigg( \pi - \dfrac{ \pi}{15} \bigg) }{ 2 \: sin \bigg( \dfrac{ \pi}{15} \bigg) \: cos \bigg( \dfrac{ \pi}{15} \bigg) }}

  \tt{ = \dfrac{ 2 \:  \cdot \bigg \{ -  sin\bigg(   \dfrac{\pi}{15} \bigg) \bigg \} \cdot \bigg \{  - cos \bigg(  \dfrac{ \pi}{15} \bigg) \bigg \} }{ 2 \: sin \bigg( \dfrac{ \pi}{15} \bigg) \: cos \bigg( \dfrac{ \pi}{15} \bigg) }}

  \tt{ = \dfrac{ 2 \:  sin\bigg( \dfrac{\pi}{15} \bigg) \:cos \bigg( \dfrac{ \pi}{15} \bigg) }{ 2 \: sin \bigg( \dfrac{ \pi}{15} \bigg) \: cos \bigg( \dfrac{ \pi}{15} \bigg) }}

 =  \sf{1}

Answered by TrustedAnswerer19
41

{\boxed{\boxed{\begin{array}{cc}\bf \:L.H.S = \rm \: 16 \cos \frac{2\pi}{15} \cos\frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{14\pi}{15} \:  \\  \\ \rm =16 \cos \frac{2\pi}{15} \cos2.\frac{2\pi}{15} \cos 4.\frac{2\pi}{15} \cos 7.\frac{2\pi}{15}   \\  \\ \orange{ \bf \: let \:  \:  \:   \theta =  \frac{2\pi}{15} } \\  \\  \rm = 16 \: cos \theta \:. cos2 \theta.cos4 \theta.cos7 \theta \\  \\  \rm =  \frac{1}{sin \theta} \times 8 \times (2 \: sin \theta.cos \theta).cos4 \theta.cos7 \theta \\  \\  \orange{ \boxed{  \begin{array}{cc} \sf \: we \: know \: that \\ \rm \: sin2x =2 sin \: x \: cos \: x \end{array}}}  \\  \\  \rm =  \frac{8}{sin \theta}  \times sin2 \theta.cos4 \theta.cos7 \theta \\  \\  \rm =  \frac{4}{sin  \theta}  \times (2 \: sin2 \theta.cos 2\theta ).cos4 \theta.cos7 \theta \\  \\   \rm =  \frac{4}{sin \theta}  \times sin4 \theta.cos 4\theta.cos7 \theta \\  \\  \rm =  \frac{2}{sin \theta} \times (2 \: sin4 \theta.4cos \theta).cos7 \theta \\  \\  \rm =  \frac{2}{sin \theta}  \times sin8 \theta.cos7 \theta \\  \\ \end{array}}}}

{\boxed{\boxed{\begin{array}{cc}{\orange{{\boxed{\begin{array}{cc}\bf \: we \: know \: that :  \\  \\  \rm \: 2 \: sin \: x \: cos \: y= sin(x + y) + sin(x - y)\end{array}}}}  }\\  \\  \rm =  \frac{1}{sin \theta}  \{sin(8 \theta + 7 \theta) + sin(8 \theta - 7 \theta)  \} \\  \\  \rm =  \frac{1}{sin \theta}  \times (sin15 \theta + sin \theta) \\  \\  \rm =  \frac{sin15 \theta}{sin \theta}  +  \frac{sin \theta}{sin \theta}  \\  \\  \rm =  \frac{1}{sin \theta}  \times sin \:  \cancel{15 }\times  \frac{2\pi}{ \cancel{15}} + 1  \\  \\  \rm =  \frac{1}{sin \theta} \times sin2\pi + 1 \\   \\ \rm =  \frac{1}{sin \theta} \times 0 + 1   \\  \\    \orange{ \boxed{ \because \:  \rm \: sin \: 2\pi = 0}}  \\  \\  = 0 + 1 \\  \\  = 1 \\  \\  =  \bf \: R.H.S\end{array}}}}

Hence,

 \orange{\boxed{\boxed{\begin{array}{cc}\bf \: 16 \cos \frac{2\pi}{15} \cos\frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{14\pi}{15} = 1\end{array}}}}

L.H.S = R.H.S _____(Proved)

______

Assalamu A'laikum, good morning...  \ddot\smile

How are you?

Hope you are pretty fine as always and your study is also going well.

Similar questions