Math, asked by nikhil58suradkar, 3 months ago

don't try to give silly answers or you will be reported

I want answer with explanation!​

Attachments:

Answers

Answered by suhail2070
3

Answer:

option (2) is correct

\frac{2 + x}{2 - x}

Step-by-step explanation:

 \frac{1 + x +  \frac{ {x}^{2} }{4} }{1 -  \frac{ {x}^{2} }{4} }  =  \frac{ {x}^{2} + 4x + 4 }{4 -  {x}^{2} }  \\  \\  =  \frac{ {(x + 2)}^{2} }{(2 + x)(2 - x)}  =  \frac{2 + x}{2 - x}

Answered by Anonymous
8

Question :-

Which of the following is the simplied form of

\sf\dfrac{1 + x + \dfrac{x^2}{4}}{1 - \dfrac{x^2}{4}}

Answer :-

\implies\sf\dfrac{1 + x + \dfrac{x^2}{4}}{1 - \dfrac{x^2}{4}}

\implies\sf\dfrac{\dfrac{4 + 4x + x^2}{4}}{ \dfrac{ 4 - x^2}{4}}

\implies\sf\dfrac{\dfrac{2^2 + 2 \times 2 \times x + x^2}{4}}{ \dfrac{ 2^2 - x^2}{4}}

  • a² + 2ab + b² = ( a + b )²
  • a² - b² = ( a + b ) ( a - b )

\implies\sf\dfrac{\dfrac{(2 + x)^2}{4}}{ \dfrac{ (2+x)(2-x)}{4}}

\implies\sf\dfrac{( 2 + x)^2 \times \not4}{(2 + x)(2 - x) \times \not4}

\implies\sf\dfrac{(2 + x)(2 + x)}{(2+ x)(2 - x)}

\implies\sf\dfrac{ 2 + x}{2 - x}

\boxed{\sf\dfrac{1 + x + \dfrac{x^2}{4}}{1 - \dfrac{x^2}{4}} = \dfrac{ 2 + x}{2 - x}}

Similar questions