English, asked by Naved1171, 6 months ago

dont spam...........​

Attachments:

Answers

Answered by Huzef048
2

x+2y=90 is the Desired Operation

Step-by-step explanation:

Given-

Given-QRP = y

Given-QRP = yORP = 90 (radius to tangent through pt of contact)

ORP - QRP = 90 - y = QRO

ORP - QRP = 90 - y = QRO

ORP - QRP = 90 - y = QRO now,

ORP - QRP = 90 - y = QRO now,QRS = 90° (ANGLE IN SEMICIRCLE)

ORP - QRP = 90 - y = QRO now,QRS = 90° (ANGLE IN SEMICIRCLE)QRO + ORS = QRS

ORP - QRP = 90 - y = QRO now,QRS = 90° (ANGLE IN SEMICIRCLE)QRO + ORS = QRS(90-y) + ORS = 90

ORP - QRP = 90 - y = QRO now,QRS = 90° (ANGLE IN SEMICIRCLE)QRO + ORS = QRS(90-y) + ORS = 90ORS = 90-(90-y)

ORP - QRP = 90 - y = QRO now,QRS = 90° (ANGLE IN SEMICIRCLE)QRO + ORS = QRS(90-y) + ORS = 90ORS = 90-(90-y)ORS = y

ORP - QRP = 90 - y = QRO now,QRS = 90° (ANGLE IN SEMICIRCLE)QRO + ORS = QRS(90-y) + ORS = 90ORS = 90-(90-y)ORS = yHENCE PROVED

ORP - QRP = 90 - y = QRO now,QRS = 90° (ANGLE IN SEMICIRCLE)QRO + ORS = QRS(90-y) + ORS = 90ORS = 90-(90-y)ORS = yHENCE PROVEDii)

ORP - QRP = 90 - y = QRO now,QRS = 90° (ANGLE IN SEMICIRCLE)QRO + ORS = QRS(90-y) + ORS = 90ORS = 90-(90-y)ORS = yHENCE PROVEDii)ORS = OSR = y (ANGLES OPP.TO EQUAL SIDES-RADII)

ORP - QRP = 90 - y = QRO now,QRS = 90° (ANGLE IN SEMICIRCLE)QRO + ORS = QRS(90-y) + ORS = 90ORS = 90-(90-y)ORS = yHENCE PROVEDii)ORS = OSR = y (ANGLES OPP.TO EQUAL SIDES-RADII)QOR=2 OSR (ANGLE SUBTENTED AT THE CENTRE BY A CHORD IS TWICE THE ANGLE SUBTENTED BY IT ON ANY OTHER PT ON THE CIRCLE)

ORP - QRP = 90 - y = QRO now,QRS = 90° (ANGLE IN SEMICIRCLE)QRO + ORS = QRS(90-y) + ORS = 90ORS = 90-(90-y)ORS = yHENCE PROVEDii)ORS = OSR = y (ANGLES OPP.TO EQUAL SIDES-RADII)QOR=2 OSR (ANGLE SUBTENTED AT THE CENTRE BY A CHORD IS TWICE THE ANGLE SUBTENTED BY IT ON ANY OTHER PT ON THE CIRCLE)QOR = 2y

ORP - QRP = 90 - y = QRO now,QRS = 90° (ANGLE IN SEMICIRCLE)QRO + ORS = QRS(90-y) + ORS = 90ORS = 90-(90-y)ORS = yHENCE PROVEDii)ORS = OSR = y (ANGLES OPP.TO EQUAL SIDES-RADII)QOR=2 OSR (ANGLE SUBTENTED AT THE CENTRE BY A CHORD IS TWICE THE ANGLE SUBTENTED BY IT ON ANY OTHER PT ON THE CIRCLE)QOR = 2yOQR = QPR+QRP (EXT. ANGLE PROP)

ORP - QRP = 90 - y = QRO now,QRS = 90° (ANGLE IN SEMICIRCLE)QRO + ORS = QRS(90-y) + ORS = 90ORS = 90-(90-y)ORS = yHENCE PROVEDii)ORS = OSR = y (ANGLES OPP.TO EQUAL SIDES-RADII)QOR=2 OSR (ANGLE SUBTENTED AT THE CENTRE BY A CHORD IS TWICE THE ANGLE SUBTENTED BY IT ON ANY OTHER PT ON THE CIRCLE)QOR = 2yOQR = QPR+QRP (EXT. ANGLE PROP)OQR = x+y

ORP - QRP = 90 - y = QRO now,QRS = 90° (ANGLE IN SEMICIRCLE)QRO + ORS = QRS(90-y) + ORS = 90ORS = 90-(90-y)ORS = yHENCE PROVEDii)ORS = OSR = y (ANGLES OPP.TO EQUAL SIDES-RADII)QOR=2 OSR (ANGLE SUBTENTED AT THE CENTRE BY A CHORD IS TWICE THE ANGLE SUBTENTED BY IT ON ANY OTHER PT ON THE CIRCLE)QOR = 2yOQR = QPR+QRP (EXT. ANGLE PROP)OQR = x+yOQR = ORQ = x+y (ANGLES OPP. TO EQUAL SIDES)

ORP - QRP = 90 - y = QRO now,QRS = 90° (ANGLE IN SEMICIRCLE)QRO + ORS = QRS(90-y) + ORS = 90ORS = 90-(90-y)ORS = yHENCE PROVEDii)ORS = OSR = y (ANGLES OPP.TO EQUAL SIDES-RADII)QOR=2 OSR (ANGLE SUBTENTED AT THE CENTRE BY A CHORD IS TWICE THE ANGLE SUBTENTED BY IT ON ANY OTHER PT ON THE CIRCLE)QOR = 2yOQR = QPR+QRP (EXT. ANGLE PROP)OQR = x+yOQR = ORQ = x+y (ANGLES OPP. TO EQUAL SIDES)OQR + ORQ + QOR = 180 (ANGLE SUM PROP)

ORP - QRP = 90 - y = QRO now,QRS = 90° (ANGLE IN SEMICIRCLE)QRO + ORS = QRS(90-y) + ORS = 90ORS = 90-(90-y)ORS = yHENCE PROVEDii)ORS = OSR = y (ANGLES OPP.TO EQUAL SIDES-RADII)QOR=2 OSR (ANGLE SUBTENTED AT THE CENTRE BY A CHORD IS TWICE THE ANGLE SUBTENTED BY IT ON ANY OTHER PT ON THE CIRCLE)QOR = 2yOQR = QPR+QRP (EXT. ANGLE PROP)OQR = x+yOQR = ORQ = x+y (ANGLES OPP. TO EQUAL SIDES)OQR + ORQ + QOR = 180 (ANGLE SUM PROP)x + y + x + y + 2y = 180

ORP - QRP = 90 - y = QRO now,QRS = 90° (ANGLE IN SEMICIRCLE)QRO + ORS = QRS(90-y) + ORS = 90ORS = 90-(90-y)ORS = yHENCE PROVEDii)ORS = OSR = y (ANGLES OPP.TO EQUAL SIDES-RADII)QOR=2 OSR (ANGLE SUBTENTED AT THE CENTRE BY A CHORD IS TWICE THE ANGLE SUBTENTED BY IT ON ANY OTHER PT ON THE CIRCLE)QOR = 2yOQR = QPR+QRP (EXT. ANGLE PROP)OQR = x+yOQR = ORQ = x+y (ANGLES OPP. TO EQUAL SIDES)OQR + ORQ + QOR = 180 (ANGLE SUM PROP)x + y + x + y + 2y = 1802x + 4y = 180

ORP - QRP = 90 - y = QRO now,QRS = 90° (ANGLE IN SEMICIRCLE)QRO + ORS = QRS(90-y) + ORS = 90ORS = 90-(90-y)ORS = yHENCE PROVEDii)ORS = OSR = y (ANGLES OPP.TO EQUAL SIDES-RADII)QOR=2 OSR (ANGLE SUBTENTED AT THE CENTRE BY A CHORD IS TWICE THE ANGLE SUBTENTED BY IT ON ANY OTHER PT ON THE CIRCLE)QOR = 2yOQR = QPR+QRP (EXT. ANGLE PROP)OQR = x+yOQR = ORQ = x+y (ANGLES OPP. TO EQUAL SIDES)OQR + ORQ + QOR = 180 (ANGLE SUM PROP)x + y + x + y + 2y = 1802x + 4y = 180x + 2y = 90 is the desired operation !

OR

Attachments:
Answered by Anonymous
0

ɪ ʜᴏᴘᴇ ᴀʙᴏᴠᴇ ᴀᴛᴛᴀᴄʜᴍᴇɴᴛ ʜᴇʟᴘ ʏᴏᴜ

Attachments:
Similar questions