Math, asked by claise, 4 months ago

## dont spam here..... ​

Attachments:

Answers

Answered by BrainlyEmpire
22

Given Equation:-

  • x² + 8x + 16

To find:-

  • Value of x.

Solution:-

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \boxed{\tt{\bigstar{Concept{\bigstar}}}}

Observe the expression; it has three terms. Therefore, it does not fit Identity III. Also, it's first and third terms are perfect squares with a positive sign before the middle term. So, it is of the form a² + 2ab + b² where a = x and b = 4.

Such that,

\tt\longrightarrow\: \: \: \: \: \:\: \: \: \: \: \:\: \: \: \: \: \:\: \: \: \: \: \:\: \: \: \: \: \:{a^2 + 2ab + b^2}

\tt\longrightarrow\: \: \: \: \: \:\: \: \: \: \: \:\: \: \: \: \: \:{x^2 + 2 (x) (4) + 4^2}

\tt\longrightarrow\: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \:{x^2 + 8x + 16}

Since,

\tt\longrightarrow\: \: \: \: \: \: \: \: \: \: \: \:{a^2 + 2ab + b^2}

\tt\longrightarrow\: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \:{(a + b)^2}

By comparison,

\tt\longrightarrow\: \: \: \: \: \: \: \: \: \: \: \:{x^2 + 8x + 16}

\tt\longrightarrow\: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \:{\boxed{\red{(x + 4)^2}}}

Answered by Anonymous
1

Answer:

Given Equation:-</p><p></p><p>x² + 8x + 16</p><p></p><p>⠀</p><p></p><p>To find:-</p><p></p><p>Value of x.</p><p></p><p>⠀</p><p></p><p>Solution:-</p><p></p><p>\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \boxed{\tt{\bigstar{Concept{\bigstar}}}}★Concept★</p><p></p><p>Observe the expression; it has three terms. Therefore, it does not fit Identity III. Also, it's first and third terms are perfect squares with a positive sign before the middle term. So, it is of the form a² + 2ab + b² where a = x and b = 4.</p><p></p><p>⠀</p><p></p><p>Such that,</p><p></p><p>\tt\longrightarrow\: \: \: \: \: \:\: \: \: \: \: \:\: \: \: \: \: \:\: \: \: \: \: \:\: \: \: \: \: \:{a^2 + 2ab + b^2}⟶a2+2ab+b2</p><p></p><p>⠀</p><p></p><p>\tt\longrightarrow\: \: \: \: \: \:\: \: \: \: \: \:\: \: \: \: \: \:{x^2 + 2 (x) (4) + 4^2}⟶x2+2(x)(4)+42</p><p></p><p>⠀</p><p></p><p>\tt\longrightarrow\: \: \: \: \: \:\: \: \: \: \: \: \: \: \: \: \: \:{x^2 + 8x + 16}⟶x2+8x+16</p><p></p><p>⠀</p><p></p><p>Since,</p><p></p><p>\tt\longrightarrow\: \: \: \: \: \: \: \: \: \: \: \:{a^2 + 2ab + b^2}⟶a2+2ab+b2</p><p></p><p>

Step-by-step explanation:

thanks

Similar questions