Math, asked by anandaraocivil, 10 months ago

Dra warough did gram ofa soild
showing the combination of a
cone and cyclinder whose base
radill are same


Answers

Answered by kshitizmridul1919
1

Step-by-step explanation:

The ratio of the volumes of a cone and of a cylinder is \frac{1}{3}

3

1

It is given that the diameter and heights of cone and cylinder are equal.

Let the height of cone and cylinder be h and the diameter of cone and cylinder be d.

Since both have same diameter, therefore they have same radius r.

The volume of cone is

V_1=\frac{1}{3}\pi r^2hV

1

=

3

1

πr

2

h

The volume of cylinder is

V_2=\pi r^2hV

2

=πr

2

h

The ratio of the volumes of a cone and of a cylinder is

\frac{V_1}{V_2}=\frac{\frac{1}{3}\pi r^2h}{\pi r^2h}=\frac{1}{3}

V

2

V

1

=

πr

2

h

3

1

πr

2

h

=

3

1

Therefore the ratio of the volumes of a cone and of a cylinder is \frac{1}{3}

3

1

.

Answered by pandacorn327
0

Answer:

A Circus Tent or a Hut  is a combination of cone and cylinder.

Step-by-step explanation:

The rough diagram of solid showing the combination of a cone and cylinder whose base radii are same​

example :

A Circus Tent or a Hut

A circus tent is a combination of a cylinder and a cone. Some circus tents also constitute a cuboid and a cone. A hut is a kutcha house and has a tent-like structure.

relationship between cone and cylinder:

The volume of the cone (V cone) is one-third that of a cylinder that has the same base and height: . The cones and cylinders shown previously are right circular cones and right circular cylinders, which means that the central axis of each is perpendicular to the base.

volume of cone 1/3x = volume of cylinder

volume of cone = 1/3\pi r²h

Similar questions