Draw a a∆ PQR , where PQ =3cm and QR=4 cm . Find the length of PR
Answers
Answered by
0
Answer:
ggfffffffggfgggggtfffffffffffffffgggggfggfffffffffffffffffffff
Answered by
0
Answer:
Draw a a∆ PQR , where PQ =3cm and QR=4 cm . Find the
Step-by-step explanation:
PQ,QR and PR are tangents to the circle at C,A and B.
∴ OC=OB=OA=r [ Radius of the circle ]
⇒ Area of the △PQR=
2
1
×PQ×QR
=
2
1
×3×4
=6cm
2
In right-angled △PQR,
⇒ (PR)
2
=(PQ)
2
+(QR)
2
⇒ (PR)
2
=(3)
2
+(4)
2
⇒ (PR)
2
=9+16
⇒ (PR)
2
=25
∴ PR=5cm
Now,
Area(△PQR)=Area(△OPQ)+Area(△OQR)+Area(△ORP)
⇒ 6=
2
1
r×PQ+
2
1
r×QR×
2
1
r×PR
⇒ 6=
2
1
r(PQ+QR+PR)
⇒ 6=
2
1
r(3+4+5)
⇒ 6=
2
1
r(12)
⇒ 6=6r
∴ r=1cm
Similar questions