English, asked by Mrnobaday, 7 months ago

Draw a circle of radius 6cm from a point 10cm away from the it's centre construct the pair of tangent to the circle and measure their length. SAY ME THE CORRECT ANSWER NO MEANS I WILL REPORT YOU

Answers

Answered by Anonymous
58
A pair of tangents to the given circle can be constructed as follows.



Step 1



Taking any point O of the given plane as centre, draw a circle of 6 cm radius. Locate a point P, 10 cm away from O. Join OP.



Step 2



Bisect OP. Let M be the mid-point of PO.



Step 3



Taking M as centre and MO as radius, draw a circle.



Step 4



Let this circle intersect the previous circle at point Q and R.



Step 5



Join PQ and PR. PQ and PR are the required tangents.





The lengths of tangents PQ and PR are 8 cm each.



Justification



The construction can be justified by proving that PQ and PR are the tangents to the circle (whose centre is O and radius is 6 cm). For this, join OQ and OR.



∠PQO is an angle in the semi-circle. We know that angle in a semi-circle is a right angle.



∴ ∠PQO = 90°



⇒ OQ ⊥ PQ



Since OQ is the radius of the circle, PQ has to be a tangent of the circle. Similarly, PR is a tangent of the circle.



now,


justification by Pythagoras theorem;


IN ∆ OPQ,



OP²  = PQ² + OQ²



(10)² = PQ² + (6)²



100 - 36 = PQ²



PQ = √64



PQ = 8





I HOPE ITS HELP YOU DEAR,


<br /><br />&lt;html&gt;<br /><br />&lt;head&gt;<br /><br />&lt;style&gt;<br /><br />h1{<br /><br />text-transform:uppercase;<br /><br />margin-top:90px;<br /><br />text-align:center;<br /><br />font-family:Courier new,monospace;<br /><br />border:3px solid rgb(60,45,8);<br /><br />border-top:none;<br /><br />width:67%;<br /><br />letter-spacing:-6px;<br /><br />box-sizing:border-box;<br /><br />padding-right:5px;<br /><br />border-radius:6px;<br /><br />font-size:35px;<br /><br />font-weight:bold;<br /><br />}<br /><br />h1 span{<br /><br />position:relative;<br /><br />display:inline-block;<br /><br />margin-right:3px;<br /><br />}<br /><br />@keyframes shahir{<br /><br />0%<br /><br />{<br /><br />transform: translateY(0px) rotate(0deg);<br /><br />}<br /><br />40%<br /><br />{<br /><br />transform: translateY(0px) rotate(0deg);<br /><br />}<br /><br />50%<br /><br />{<br /><br />transform: translateY(-50px)rotate(180deg);;<br /><br />}<br /><br />60%<br /><br />{<br /><br />transform: translateY(0px)rotate(360deg);;<br /><br />}<br /><br />100%<br /><br />{<br /><br />transform: translate(0px)rotate(360deg);;<br /><br />}}<br /><br />h1 span<br /><br />{<br /><br />animation: shahir 3s alternate infinite linear;<br /><br />}<br /><br />h1 span:nth-child(1)<br /><br />{color:pink;<br /><br />animation-delay: 0s;<br /><br />}<br /><br />h1 span:nth-child(2)<br /><br />{color:lightmaroon;<br /><br />animation-delay: 0.2s;<br /><br />}<br /><br />h1 span:nth-child(3)<br /><br />{color:red;<br /><br />animation-delay:0s;<br /><br />}<br /><br />h1 span:nth-child(4)<br /><br />{color:lightgreen;<br /><br />animation-delay: 0.4s;<br /><br />}<br /><br />h1 span:nth-child(5)<br /><br />{color:blue;<br /><br />animation-delay: 0.5s;<br /><br />}<br /><br />h1 span:nth-child(6)<br /><br />{color:purple;<br /><br />animation-delay: 0.3s;<br /><br />}<br /><br />&lt;/style&gt;<br /><br />&lt;meta name="viewport" content="width=device-width" &gt;<br /><br />&lt;/head&gt;<br /><br />&lt;body&gt;<br /><br />&lt;center&gt;<br /><br />&lt;div&gt;<br /><br />&lt;h1&gt;<br /><br />&lt;span&gt;A&lt;/span&gt;<br /><br />&lt;span&gt;N&lt;/span&gt;<br /><br />&lt;span&gt;I&lt;/span&gt;<br /><br />&lt;span&gt;K&lt;/span&gt;<br /><br />&lt;span&gt; E&lt;/span&gt;<br /><br />&lt;span&gt;T&lt;/span&gt;<br /><br />&lt;span&gt;⚡&lt;/span&gt;<br /><br />&lt;/h1&gt;<br /><br />&lt;/div&gt;<br /><br />&lt;/center&gt;<br /><br />&lt;/body&gt;<br /><br />&lt;/html&gt;<br /><br />

Attachments:
Answered by llxdevilgirlxll
7

\huge\mathbb\pink{Answer}

A pair of tangents to the given circle can be constructed as follows.

Step 1

Taking any point O of the given plane as centre, draw a circle of 6 cm radius. Locate a point P, 10 cm away from O. Join OP.

Step 2

Bisect OP. Let M be the mid-point of PO.

Step 3

Taking M as centre and MO as radius, draw a circle.

Step 4

Let this circle intersect the previous circle at point Q and R.

Step 5

Join PQ and PR. PQ and PR are the required tangents.

The lengths of tangents PQ and PR are 8 cm each.

Justification

The construction can be justified by proving that PQ and PR are the tangents to the circle (whose centre is O and radius is 6 cm). For this, join OQ and OR.

∠PQO is an angle in the semi-circle. We know that angle in a semi-circle is a right angle.

∴ ∠PQO = 90°

⇒ OQ ⊥ PQ

Since OQ is the radius of the circle, PQ has to be a tangent of the circle. Similarly, PR is a tangent of the circle.

now,

justification by Pythagoras theorem;

IN ∆ OPQ,

OP² = PQ² + OQ²

(10)² = PQ² + (6)²

100 - 36 = PQ²

PQ = √64

PQ = 8

I HOPE ITS HELP YOU DEAR,

Attachments:
Similar questions