draw a circle. take three point - one on the circle , one in its interior and one in its exterior. prepare a table showing rough figure and stating how many tangents can be drawn to the circle through each of the three points.
Answers
Answered by
56
Solution:
A circle with center O and
1. Point A, lie in the interior
2. Point B , lie on the circle.
3. Point C , lie outside the circle.
1. We can't draw tangents from interior of the circle.
So, number of tangents from point A =0
2 . Point B , which is on the circle .
Number of tangents from Point B = 1
3. Point C, which is outside the circle with center O
Number of tangents from Point C = 2
Attachments:
Answered by
7
Total of three tangents can be drawn two tangents from the point outside the circle and one tangent from the point which lie on circle no tangent can be drawn from the point inside the circle
Similar questions