Math, asked by Assassinator8698, 3 months ago

Draw a graph of quadratic equation:-. -2x^2+5x+3

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given quadratic curve is

\rm :\longmapsto\:y =  - 2 {x}^{2} + 5x + 3 -  - (1)

Note :-

\rm :\longmapsto\:y =  {ax}^{2} + bx + c \: represents \: parabola \: whose \:

\rm :\longmapsto\:vertex \:  =  \: \bigg( - \dfrac{b}{2a},\dfrac{4ac -  {b}^{2} }{4a} \bigg)

So,

For the given quadratic,

\rm :\longmapsto\:vertex \:  =  \: \bigg( - \dfrac{5}{2( - 2)},\dfrac{4( - 2)(3) -  {5}^{2} }{4( - 2)} \bigg)

\rm :\longmapsto\:vertex \:  =  \: \bigg( \dfrac{5}{4},\dfrac{49 }{8} \bigg)

Now,

Substituting 'x = 0' in the given equation (1), we get

\rm :\longmapsto\:y =  - 2 {(0)}^{2} + 5(0) + 3

\bf\implies \:y = 3

Substituting 'x = 3' in the given equation, we get

\rm :\longmapsto\:y =  - 2 {(3)}^{2} + 5(3) + 3

\rm :\longmapsto\: y =  - 18 + 15 + 3

\bf\implies \:y = 0

Substituting 'x = - 0.5' in the given equation, we get

\rm :\longmapsto\:y =  - 2 {( - 0.5)}^{2} + 5( - 0.5) + 3

\rm :\longmapsto\:y =  - 0.5 - 2.5 + 3

\bf\implies \:y = 0

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 3 & \sf 0 \\ \\ \sf  - 0.5 & \sf 0 \\ \\ \sf 0 & \sf 3 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points (0 , 3), (3 , 0) & (- 0.5 , 0)

➢ See the attachment graph.

Attachments:
Similar questions