Math, asked by tanikathb, 1 day ago

draw a graph of x minus y + 1 is equal to zero 3 X + 2 Y - 12 is equal to zero calculate the area bounded by these lines and x axis​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:x - y + 1 = 0 -  -  - (1)

and

\rm :\longmapsto\:3x + 2y - 12 = 0 -  -  - (2)

Consider equation (1)

\rm :\longmapsto\:x - y + 1 = 0

Substituting 'x = 0' in the given equation, we get

\rm :\longmapsto\:0 - y + 1 = 0

\rm :\longmapsto\: - y + 1 = 0

\rm :\longmapsto\: - y=  - 1

\bf\implies \:y = 1

Substituting 'y = 0' in the given equation, we get

\rm :\longmapsto\:x - 0 + 1 = 0

\rm :\longmapsto\:x + 1 = 0

\bf\implies \:x =  - 1

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 1 \\ \\ \sf  - 1 & \sf 0 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points (0 , 1) & (- 1 , 0)

See the attachment graph.

Consider equation (2)

\rm :\longmapsto\:3x + 2y - 12 = 0

Substituting 'x = 0' in the given equation, we get

\rm :\longmapsto\:3(0) + 2y - 12 = 0

\rm :\longmapsto \: 2y - 12 = 0

\rm :\longmapsto \: 2y = 12

\bf\implies \:y = 6

Substituting 'y = 0' in the given equation, we get

\rm :\longmapsto\:3x + 2(0) - 12 = 0

\rm :\longmapsto\:3x - 12 = 0

\rm :\longmapsto\:3x  =  12

\bf\implies \:x = 4

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 6 \\ \\ \sf 4 & \sf 0 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points (0 , 6) & (4 , 0)

➢ See the attachment graph.

Now, from graph we concluded that, the required triangle formed by the given two lines with x - axis is ABC having vertices

Coordinates of A (2, 3)

Coordinates of B (- 1, 0)

Coordinates of C (4, 0)

So, Base of triangle ABC = 5 units

Height of triangle ABC = 3 units

So, area of triangle ABC is

\rm \:  =  \: \dfrac{1}{2}  \times 5 \times 3

\rm \:  =  \: \dfrac{15}{2}

\rm \:  =  \:7.5 \: square \: units

Attachments:
Similar questions