Math, asked by sarthaknegi1804, 1 month ago


Draw a line AB. Produce it to C so that AC =3 AB.​

Answers

Answered by prathamsingh040
0

Answer:

vgggvbgtgvghbbggbgbgbyvygvyyy

Answered by naazrana15
1

Step-by-step explanation:

We take the co-ordinates of A and B as (−a,0) and (a,0) respectively so that the mid-point of AB is the origin and AB the x-axis. If (h,0) are the co-ordinates of C, then since AC=3 CB, we have

h=3+13.a+1.(−a)=21a.

On AC and CB as diameters we draw two circles so that they touch each other at C(21a,0). Their centres are P(−41a,0) and Q(43a,0) and radii are 43a and 41a respectively. Let a common tangent RS meet AB produced in D. Let (α,0) be the co-ordinates of D. Then since D divides PQ externally in the ratio of the radii 43a:41a

i.e. 3:1, we have

α=3−13.(43a)−1.(−41a)=45a.

∴OD=

hope it helps uh!

plz mark as brainliest answer and help to get me to 100 likes

Attachments:
Similar questions