Math, asked by piyushsharma50, 6 days ago

Draw a line segment AB of length 5 cm. At A and B, construct lines perpendicular to AB. Also, draw the perpendicular bisector of AB. Are these three lines parallel to each other? Justify your answer. ​

Answers

Answered by XTLUCKYBHAI
3

Answer:

Here the length of AB = 5cm  

DA is perpendicular to AB.  

EB is perpendicular to AB.  

Two lines perpendicular to same line are parallel to each other.  

Also \angle1 =\angle 3 = 90^{o}∠1=∠3=90o

So \angle1 + \angle3 = 180^{o}∠1+∠3=180o

If the sum of co interior angles = 180°, the lines are parallel.  

Hence AD || BE  

Now we construct the perpendicular bisector of AB which intersects AB at C  

Again  

\angle1= \angle2 = 90^{o}∠1=∠2=90o

So  

\angle1 + \angle2 = 180^{o}∠1+∠2=180o

We know If the sum of co interior angles = 180°, the lines are parallel.  

Hence AD || CF  

Now BE ||AD || CF  

Hence all the three lines are parallel to each other.  

Step-by-step explanation:

Mark me brainlist please hope it's help you and give me thanks please

Attachments:
Answered by Yoursenorita
3

ANSWER:

  • LENGTH OF AB = 5CM

  • AD IS PERPENDICULAR TO AB

  • EB IS PERPENDICULAR TO AB

  • TWO LINES PERPENDICULAR TO THE SAME LINE ARE ALWAYS PARALLEL TO EACH OTHER

  • ALSO

ANGLE 1= ANGLE 3 = 90°

ANGLE 1 + ANGLE 3 = 180°

  • SUM OF COOINTERIOR ANGLES IS 180° SO IT'S PARALLEL

  • SO ALL THREE LINES ARE PARALLEL TO EACH OTHER

Attachments:
Similar questions