draw a logic circuit diagram for the boolean expression (X+Y),(X'+Y),(X'+Y')
Answers
Answer:
Learning to analyze digital circuits requires much study and practice. Typically, students practice by working through lots of sample problems and checking their answers against those provided by the textbook or the instructor. While this is good, there is a much better way.
You will learn much more by actually building and analyzing real circuits, letting your test equipment provide the “answers” instead of a book or another person. For successful circuit-building exercises, follow these steps:
Draw the schematic diagram for the digital circuit to be analyzed.
Carefully build this circuit on a breadboard or other convenient medium.
Check the accuracy of the circuit’s construction, following each wire to each connection point, and verifying these elements one-by-one on the diagram.
Analyze the circuit, determining all output logic states for given input conditions.
Carefully measure those logic states, to verify the accuracy of your analysis.
If there are any errors, carefully check your circuit’s construction against the diagram, then carefully re-analyze the circuit and re-measure.
As well as a standard Boolean Expression, the input and output information of any Logic Gate or circuit can be plotted into a standard table to give a visual representation of the switching function of the system.
The table used to represent the boolean expression of a logic gate function is commonly called a Truth Table. A logic gate truth table shows each possible input combination to the gate or circuit with the resultant output depending upon the combination of these input(s).
For example, consider a single 2-input logic circuit with input variables labelled as A and B. There are “four” possible input combinations or 22 of “OFF” and “ON” for the two inputs. However, when dealing with Boolean expressions and especially logic gate truth tables, we do not general use “ON” or “OFF” but instead give them bit values which represent a logic level “1” or a logic level “0” respectively.
hope this will help you..