Math, asked by sahil9183102201, 1 year ago

Draw a perpendicular to y=4x+6, and passing through(-8, -26) on a graph.

Answers

Answered by AbhijithPrakash
5

Answer:

\mathrm{Perpendicular\:to\:}y=4x+6\mathrm{,\:and\:passing\:through\:}\left(-8,\:-26\right):\quad y=-\dfrac{1}{4}x-28

Step-by-step explanation:

\mathrm{Find\:the\:line\:}\mathbf{y=mx+b}\mathrm{\:perpendicular\:to\:}y=4x+6\mathrm{\:that\:passes\:through\:}\left(-8,\:-26\right)

\mathrm{Compute\:the\:slope\:of\:}y=4x+6

y=4x+6

\mathrm{For\:a\:line\:equation\:for\:the\:form\:of\:}\mathbf{y=mx+b}\mathrm{,\:the\:slope\:is\:}\mathbf{m}

m=4

\mathrm{Compute\:the\:slope\:of\:the\:perpendicular\:line}

\mathrm{The\:perpendicular\:slope\:is\:the\:negative\:reciprocal\:of\:the\:given\:slope}

\left(4\right)m_p=-1

\mathrm{Divide\:both\:sides\:by\:}4

\dfrac{4m_p}{4}=\dfrac{-1}{4}

Simplify

m_p=-\dfrac{1}{4}

\mathrm{Find\:the\:line\:with\:slope\:m=}-\frac{1}{4}\mathrm{\:and\:passing\:through\:}\left(-8,\:-26\right)

\mathrm{Compute\:the\:line\:equation\:}\mathbf{y=mx+b}\mathrm{\:for\:slope\:m=}-\frac{1}{4}\mathrm{\:and\:passing\:through\:}\left(-8,\:-26\right)

\mathrm{Compute\:the\:}y\mathrm{\:intercept}

\mathrm{Plug\:the\:slope\:}-\dfrac{1}{4}\mathrm{\:into\:}y=mx+b

y=\left(-\dfrac{1}{4}\right)x+b

\mathrm{Plug\:in\:}\left(-8,\:-26\right)\mathrm{:\:}\quad \:x=-8,\:y=-26

-26=\left(-\dfrac{1}{4}\right)\left(-8\right)+b

\mathrm{Isolate}\:b

-26=\left(-\dfrac{1}{4}\right)\left(-8\right)+b

\mathrm{Switch\:sides}

\left(-\dfrac{1}{4}\right)\left(-8\right)+b=-26

\mathrm{Remove\:parentheses}:\quad \left(-a\right)=-a,\:-\left(-a\right)=a

\dfrac{1}{4}\cdot \:8+b=-26

\dfrac{1}{4}\cdot \:8

\mathrm{Multiply\:fractions}:\quad \:a\cdot \dfrac{b}{c}=\dfrac{a\:\cdot \:b}{c}

=\dfrac{1\cdot \:8}{4}

\mathrm{Multiply\:the\:numbers:}\:1\cdot \:8=8

=\dfrac{8}{4}

\mathrm{Divide\:the\:numbers:}\:\dfrac{8}{4}=2

2+b=-26

\mathrm{Subtract\:}2\mathrm{\:from\:both\:sides}

2+b-2=-26-2

\mathrm{Simplify}

b=-28

\mathrm{Construct\:the\:line\:equation\:}\mathbf{y=mx+b}\mathrm{\:where\:}\mathbf{m}=-\dfrac{1}{4}\mathrm{\:and\:}\mathbf{b}=-28

y=-\dfrac{1}{4}x-28

Attachments:

sahil9183102201: Thank you friend
AbhijithPrakash: NP :)
letshelpothers9: osm answer :)
AbhijithPrakash: Thanks!!
Similar questions
Math, 1 year ago