Math, asked by chandeepsingh0004, 3 months ago

draw graph of function f:R-> defined byf(x)=3x²​

Answers

Answered by mathdude500
2

\begin{gathered}\begin{gathered}\bf \:Given - \begin{cases} &\sf{f(x) \:  =  \:  {3x}^{2} }\end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To\:find - \begin{cases} &\sf{sketch \: the \: graph \: of \:  {3x}^{2} }  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

We know,

  • For the parabola x² = 4ay,

  • Vertex = (0, 0)

  • Focus = (0, a)

  • Equation of axis, x = 0

  • Equation of directrix, y = - a

  • Length of Latus Rectum = 4a

  • Symmetric:- Symmetric along y - axis.

\large\underline{\bold{Solution-}}

Given function is

  • f(x) = 3x²

Let

  • y = 3x²

\rm :\implies\: {x}^{2}  = \dfrac{1}{3} \:  y

  • which is the equation of Parabola.

  • On comparing with x² = 4ay,

we get

\rm :\longmapsto\:4a = \dfrac{1}{3}

\rm :\implies\:a \:  =  \: \dfrac{1}{12}

Now,

we have

  • Vertex = (0, 0)

  • Focus = (0, 1/12)

  • Equation of axis, x = 0

  • Equation of directrix, y = - 1/12

  • Length of Latus Rectum = 1/3

  • Symmetric:- Symmetric along y - axis.

Intercept on axis :-

To Find intercept on x - axis

  • Put y = 0, we get x = 0

  • It implies, curve has no intercept on x - axis.

To find intercept on y - axis,

  • Put x = 0, we get y = 0.

  • It implies, curve has no intercept on y - axis.

Points on curve :-

Now,

Let select few values of x, to get corresponding values of y

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 0 \\ \\ \sf 1 & \sf 3 \\ \\ \sf  - 1 & \sf 3\\ \\ \sf 2 & \sf 12\\ \\ \sf  - 2 & \sf 12\\ \\ \sf 3 & \sf 27\\ \\ \sf  - 3 & \sf 27 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points

➢ See the attachment graph.

Explore more :-

For the parabola x² = - 4ay,

  • Vertex = (0, 0)

  • Focus = (0, - a)

  • Equation of axis, x = 0

  • Equation of directrix, y = a

  • Length of Latus Rectum = 4a

  • Symmetric:- Symmetric along y - axis.

For the parabola y² = 4ax,

  • Vertex = (0, 0)

  • Focus = (a, 0)

  • Equation of axis, y = 0

  • Equation of directrix, x = - a

  • Length of Latus Rectum = 4a

  • Symmetric:- Symmetric along x - axis.

For the parabola y² = - 4ax,

  • Vertex = (0, 0)

  • Focus = (- a, 0)

  • Equation of axis, y = 0

  • Equation of directrix, x = a

  • Length of Latus Rectum = 4a

  • Symmetric:- Symmetric along x - axis.
Attachments:
Similar questions