Math, asked by seematanush1983, 9 months ago


Draw histogram for the marks of the students
given below:
Marks/0-10/10-30/30-45/45-50/50-60/
no.of stu./
8/32/18/10/6​

Answers

Answered by sujatamaddu2383
2

800, 975, 1100, 1400, 1625 ... (i) The bar graph shows the marks obtained by a student in various subjects in ... The heights of 75 students in a school are given ...

hope it helps you please mark me as brainliest please plz plz

Answered by SarcasticL0ve
6

{\underline{\underline{\frak{Answer\;:}}}}\\ \\

\begin{lgathered}\begin{tabular}{| c | c | c | c | c | c | }\cline{1-6} \bf{Marks} & \sf{0-10} & \sf{10-30} & \sf{30-45} & \sf{45-50} & \sf{50-60} \\ \cline{1-6}\bf{No. of students} & \sf{8} & \sf{32} & \sf{18} & \sf{10} & \sf{6} \\ \cline{1-6} \end{tabular}\end{lgathered}

⠀⠀⠀

Here, Minimum class - size is 5.

We adjust the frequencies by using the following formula:

⠀⠀

\star\;\sf \pink{Adjust\; frequency\;of\;a\;class = \dfrac{Minimum\;class\;size}{Class\;size} \times Frequency\;of\;the\;class}\\ \\

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

☯ The Adjust frequencies are computed as follows:

\boxed{\begin{array}{c|c|c}\bf Class\: interval&\bf Frequency\: (f) &\bf Adjusted \: Frequency \\ \sf (Marks)&\sf (No \: of \: students) &\\\frac{\qquad\qquad \qquad \qquad}{}&\frac{\qquad\qquad\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\\\sf 0 - 10&\sf 8&\sf  \dfrac{5}{10} \times 8 = 4\\ \\ \\\sf 10 - 30 &\sf 32&\sf \dfrac{5}{20} \times 32 = 8\\\\\\\sf 30 - 45 &\sf 18&\sf \dfrac{5}{15} \times 18 = 6\\\\\\\sf 45 - 50&\sf 10&\sf \dfrac{5}{5} \times 10 = 10\\\\\\\sf 50 - 60&\sf 6&\sf \dfrac{5}{10} \times 6 = 3 \end{array}}

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\setlength{\unitlength}{1 cm}\begin{picture}(12,4)\thicklines\put(0.9,10.3){\sf Y}\put(11.2,0.9){\sf X}\put(0.7,0.5){\sf0}\put(1,1){\circle*{0.1}}\put(1,1){\vector(1,0){10}}\put(1,1){\vector(0,1){9}}\put(9.7,0.9){\line(0,1){0.2}}\put(2.5,0.9){\line(0,1){0.2}}\put(5,0.9){\line(0,1){0.2}}\put(7.2,0.9){\line(0,1){0.2}}\put(8.2,0.9){\line(0,1){0.2}}\put(0.9,8.5){\line(1,0){0.2}}\put(0.9,2.5){\line(1,0){0.2}}\put(0.9,4){\line(1,0){0.2}}\put(0.9,5.5){\line(1,0){0.2}}\put(0.9,7){\line(1,0){0.2}}\put(0.9,8.5){\line(1,0){0.2}}\put(2.3,0.5){\sf10}\put(4.8,0.5){\sf30}\put(7,0.5){\sf45}\put(8,0.5){\sf50}\put(9.5,0.5){\sf60}\put(0.6,2.4){\sf2}\put(0.6,3.9){\sf4}\put(0.6,5.4){\sf6}\put(0.6,6.9){\sf8}\put(0.5,8.4){\sf10}\put(2.5,1){\line(0,1){6}}\put(5,1){\line(0,1){6}}\put(8.2,1){\line(0,1){7.5}}\put(7.2,1){\line(0,1){7.5}}\put(9.7,1){\line(0,1){2.1}}\put(1,4){\line(1,0){1.5}}\put(2.5,7){\line(1,0){2.5}}\put(5,5.5){\line(1,0){2.2}}\put(7.2,8.5){\line(1,0){1}}\put(8.2,3.1){\line(1,0){1.5}}\put(4,0.1){\vector(1,0){3.5}}\put(5.3,-0.3){\sf Marks}\put(0.1,3){\vector(0,1){3.5}}\put(-0.17,5.6){\sf S}\put(-0.17,5.3){\sf t}\put(-0.17,5){\sf u}\put(-0.17,4.7){\sf d}\put(-0.17,4.4){\sf e}\put(-0.17,4.1){\sf n}\put(-0.17,3.8){\sf t}\put(-0.17,3.5){\sf s}\end{picture}

☯ Now, we construct rectangles with class - limits as bases and respective adjusted frequencies as heights.

Similar questions