Draw square root spiral , also draw any spiral found in nature (Compare them and write few lines about beauty of Mathematics in nature). This needs to be added in the portfolio.
Answers
Materials Required
Adhesive
Geometry box
Marker
A piece of plywood
Prerequisite Knowledge
Concept of number line.
Concept of irrational numbers.
Pythagoras theorem.
Theory
A number line is a imaginary line whose each point represents a real number.
The numbers which cannot be expressed in the form p/q where q ≠ 0 and both p and q are integers, are called irrational numbers, e.g. √3, π, etc.
According to Pythagoras theorem, in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of other two sides containing right angle. ΔABC is a right angled triangle having right angle at B.
Therefore, AC² = AB² +BC²
where, AC = hypotenuse, AB = perpendicular and BC = base
Procedure
Take a piece of plywood having the dimensions 30 cm x 30 cm.
Draw a line segment PQ of length 1 unit by taking 2 cm as 1 unit, (see Fig. 1.2)

Construct a line QX perpendicular to the line segment PQ, by using compasses or a set square, (see Fig. 1.3)
From Q, draw an arc of 1 unit, which cut QX at C(say). (see Fig. 1.4)

Join PC.
Taking PC as base, draw a perpendicular CY to PC, by using compasses or a set square.
From C, draw an arc of 1 unit, which cut CY at D (say).
Join PD. (see Fig. 1.5)

Taking PD as base, draw a perpendicular DZ to PD, by using compasses or a set square.
From D, draw an arc of 1 unit, which cut DZ at E (say).
Join PE. (see Fig. 1.5)
Keep repeating the above process for sufficient number of times. Then, the figure so obtained is called a ‘square root spiral’.
Demonstration
In the Fig. 1.5, ΔPQC is a right angled triangle.
So, from Pythagoras theorem,
we have PC² = PQ² + QC²
[∴ (Hypotenuse)² = (Perpendicular)² + (Base)²]
= 1² +1² =2
=> PC = √2
Again, ΔPCD is also a right angled triangle.
So, from Pythagoras theorem,
PD² =PC² +CD²
= (√2)² +(1)² =2+1 = 3
=> PD = √3
Similarly, we will have
PE= √4
=> PF=√5
=> PG = √6 and so on.