Math, asked by rupalipderle, 6 months ago

Draw the following of x+y=6 which intersects the x-axis and the Y- axis at A and B respectively. find the length of seg AB. also find the area of ∆AOB, where O is the point of origin​

Answers

Answered by Anonymous
12

 \LARGE \bf  \color{silver}Hola!

GiveN :

 \rightsquigarrow \sf   linear \:  \: {eq}^{n}  \:  \:  is \:  \: \: x + y = 6

 \rightsquigarrow \sf \: it \:  \: intersects \:  \: x -axis \:  \: at \:  \: pt   = A( \: x  \: , \:  0 \: ) \\

 \rightsquigarrow \sf \: it \:  \: intersects \:  \: y -axis \:  \: at \:  \: pt   = B( \: 0  \: , \:  y \: ) \\

To FinD :

  \rightsquigarrow \sf length \:  \: of \:  \:  {AB}

  \rightsquigarrow \sf area \:  \: of \:  \:   \triangle \: {AOB}

SolutioN :

x+y=6 intersects x-axis :

  \sf y = 0  \:  \: when \:  \: it \:  \: intersects \:  \: x \: axis

 \sf  Hence, \: \:  putting  \:  \: y=0

 \dashrightarrow \sf \: x \:  + 0 = 6

 \dashrightarrow \sf { {{ x \: = 6}}}

 \dashrightarrow \sf { \underline{\underline{ pt \: = (6 \: , \: 0)}}}

x+y=6 intersects y-axis :

  \sf x = 0  \:  \: when \:  \: it \:  \: intersects \:  \: y \: axis

 \sf  Hence, \: \:  putting  \:  \: x=0

 \dashrightarrow \sf \: 0 \:  + y = 6

 \dashrightarrow \sf { {{ y \: = 6}}}

 \dashrightarrow \sf { \underline{\underline{ pt \: = (0 \: , \: 6)}}}

________________

~DISTANCE

 \dashrightarrow \sf \: AB    =  \sqrt{ {(0 - 6)}^{2}  +  {(6 - 0)}^{2} }

 \:  \:  \therefore \: { \underline{ \boxed{\sf \: AB    =  6\sqrt{2}}}}

________________

~AREA

distance of pt A from pole is 6 unit

and distance of pt B from pole is 6 unit

 \dashrightarrow \sf \triangle \: AOB =  \frac{1}{2}  \times 6 \times 6 \:  \:

   \:  \:  \:  \therefore \underline{ \boxed{ \sf \triangle \: AOB = 18}}

RequireD ConcepT :

 \circ \sf \:  \: Area \:  \:  of  \:  \: a  \:  \: triangle \:  = \frac{1}{2}  \times  base × hight

 \circ \sf \:  \: Distance  \:  \: of  \:  \:  \: two  \:  \: pts \:  =  \sqrt{(y_2-y_1)²+(x_2-x_1)²}

__________________

HOPE THIS IS HELPFUL...

 \tt \fcolorbox{skyblue}{skyblue}{@StayHigh}

Attachments:
Answered by royallonda
0

Fst baby aao n jkdi se I'm waiting

Attachments:
Similar questions