Math, asked by diya897, 4 months ago

draw the grap of the function f(x)={1+x,-1≤x≤0\1-x,0<x≤1}​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

\begin{gathered}\begin{gathered}\bf \:Given \: f(x) = y = \begin{cases} &amp;\sf{1 + x \: if \:  - 1 \leqslant x \leqslant 0} \\ &amp;\sf{1 - x \: if \: 0 &lt; x \leqslant 1} \end{cases}\end{gathered}\end{gathered}

Case :- 1

 \sf \: When \: y \:  =  \: x + 1 \: if \:  - 1 \leqslant x \leqslant 0

1. Substituting 'x = 0' in the given equation, we get

\rm :\longmapsto\:y = 1 + 0

\bf\implies \:y = 1

2. Substituting 'x = - 0.5' in the given equation, we get

\rm :\longmapsto\:y = 1 - 0.5

\bf\implies \:y = 0.5

3. Substituting 'x = - 1' in the given equation, we get

\rm :\longmapsto\:y = 1 - 1

\bf\implies \:y = 0

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x &amp; \bf y \\ \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf 0 &amp; \sf 1 \\ \\ \sf  - 0.5 &amp; \sf 0.5 \\ \\ \sf  - 1 &amp; \sf 0 \end{array}} \\ \end{gathered}

Now draw a graph using the points (0 , 1), (- 0.5 , 0.5) & (- 1 , 0)

➢ See the attachment graph. (Red line)

Case :- 2

 \sf \: When \: y = 1 - x \: if \: 0 &lt; x \leqslant 1

1. Substituting 'x = 1' in the given equation, we get

\rm :\longmapsto\:y = 1 - 1

\bf\implies \:y = 0

2. Substituting 'x = 0.5' in the given equation, we get

\rm :\longmapsto\:y = 1 - 0.5

\bf\implies \:y = 0.5

3. Substituting 'x = 0.4' in the given equation, we get

\rm :\longmapsto\:y = 1 - 0.4

\bf\implies \:y = 0.6

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x &amp; \bf y \\ \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf 1 &amp; \sf 0 \\ \\ \sf 0.5 &amp; \sf 0.5 \\ \\ \sf 0.4 &amp; \sf 0.6 \end{array}} \\ \end{gathered}

Now draw a graph using the points (1 , 0), (0.5 , 0.5) & (0.4 , 0.6)

➢ See the attachment graph. (Blue line)

Attachments:
Similar questions