Math, asked by lucy6421, 2 months ago

Draw the graph of f(x) = x 2 − 3 and find its domain and range.

Answers

Answered by TrustedAnswerer19
5

Answer:

Given,

 \sf \: f(x) =  {x}^{2}  - 3 \\  \sf \:

The function f (x) is defined for all real values of x

So,

 \sf \: domain \:  \: D_f =  \mathbb{R} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   = ( -  \infty \:,   \infty)

To find range, we assumed that,

 \sf \: y = f(x) =  {x}^{2}  - 3 \\  \sf \implies \: y =  {x}^{2}  - 3 \\   \sf \implies \:  {x}^{2}  = y  + 3 \\   \sf \implies \: x =  \sqrt{y + 3}  \\  \bf \: now \:  \: x =  \sqrt{y + 3}  \:  \: will \: exist \: iff \\  \\  \sf \:  \:  \:  \:  \:  \: y + 3 \geqslant 0 \\   \sf \implies \: y \geqslant  - 3 \\  \\  \sf \:  \: \green {\boxed{ so \: range \: R_f = [3, \infty)}}

Attachments:
Similar questions