Math, asked by mryash65, 5 hours ago

Draw the graph of function f(x) = |x+1|. Check injectivity and surjectivity . Write its domain and range?​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) =  |x + 1|

We know,

Definition of Modulus function is as

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x|  = \begin{cases} &\sf{ - x \:  \: when \: x < 0}  \\ \\ &\sf{ \:  \: x \:  \: when \: x \geqslant 0} \end{cases}\end{gathered}\end{gathered}

Thus, using this definition, we have

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x + 1|  = \begin{cases} &\sf{ - (x  + 1)\:  \: when \: x + 1 < 0}  \\ \\ &\sf{ \:  \: x + 1 \:  \: when \: x + 1 \geqslant 0} \end{cases}\end{gathered}\end{gathered}

further can be rewritten as

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x + 1|  = \begin{cases} &\sf{ - (x  + 1)\:  \: when \: x <  - 1}  \\ \\ &\sf{ \:  \: x + 1 \:  \: when \: x \geqslant  - 1} \end{cases}\end{gathered}\end{gathered}

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 1 \\ \\ \sf 1 & \sf 2 \\ \\ \sf  - 1 & \sf  0\\ \\ \sf  - 2 & \sf 1\\ \\ \sf 3 & \sf 2 \end{array}} \\ \end{gathered}

[ See the attachment for the graph ].

Now,

We know,

One - One or injective function :- A function f(x) is said to be one one iff corresponding to one value of x, there is one value of f(x)

OR

 \sf \: f : a \to \: b \: is \: one - one \: if \: f(x) = f(y)\rm\implies \:x = y  \: \forall \: x,y \in \: a

So, here for the function f(x) = |x + 1|, we have

\rm :\longmapsto\:f( - 2) = f(0) = 1

\bf\implies \:f(x) \: is \: not \: injective

Now,

Onto or Surjective function :-

 \sf \: f : a \to \: b \: is \: onto \: if \forall \:y \in \: b \: there \: exist \: x \in \: a \: such \: that \: f(x) = y

Now, here for the function f(x) = |x + 1|,

\rm :\longmapsto\:f \: is \: not \: surjective \: as \: for \:  - 1 \in \: real \: number,  \\  \rm \: there \: doesnot \: exist \: any \: x \in \: real \: number.

Hence, f(x) = | x + 1 | is neither injective nor Surjective function.

Attachments:
Similar questions