Math, asked by hanisha166, 13 days ago

draw the graph of p(x)=x2-x-12 ​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given quadratic polynomial is

\rm :\longmapsto\:p(x) =  {x}^{2} - x - 12

Let assume that

\rm :\longmapsto\:y =  {x}^{2} - x - 12

To plot the graph of the quadratic polynomial which is always parabola, the following steps have to be followed :-

Step :- 1 Vertex of parabola

We know, vertex of parabola of quadratic polynomial ax² + bx + c is given by

\blue{ \boxed{\bf \:Vertex = \bigg( - \dfrac{ b}{2a} , \: \dfrac{4ac - {b}^{2} }{4a} \bigg)}}

Here,

\rm :\longmapsto\:a = 1

\rm :\longmapsto\:b = -  1

\rm :\longmapsto\:c = -  12

So, on substituting the values, we get

\rm :\longmapsto\: \:Vertex = \bigg( - \dfrac{( - 1)}{2(1)} , \: \dfrac{4(1)( - 12) - {( - 1)}^{2} }{4(1)} \bigg)

\rm :\longmapsto\: \:Vertex = \bigg( \dfrac{1}{2} , \: \dfrac{ - 49 }{4} \bigg)

\rm :\longmapsto\: \:Vertex = \bigg(\:  \dfrac{1}{2} , \:  -  \: \dfrac{49 }{4} \bigg)

Step :- 2

Point of intersection with x - axis

We know, on x - axis, y = 0.

So,

\rm :\longmapsto\: {x}^{2} - 4x + 3x - 12 = 0

\rm :\longmapsto\:x(x - 4) + 3(x - 4) = 0

\rm :\longmapsto\:(x - 4)(x + 3) = 0

\bf\implies \:x = 4 \:  \: or \:  \: x = \:   - \:  3

Hence, the point of intersection with x- axis is (4, 0) and ( - 3, 0).

Now,

Point of intersection with y - axis.

We know, on y - axis, x = 0

So, on Substituting the value in given curve, we get

\rm :\longmapsto\:y =  {0}^{2} - 0 - 12

\rm :\longmapsto\:y \:  =  \:  - \:  12

Hence, the point of intersection with y- axis is (0, - 12).

Hᴇɴᴄᴇ,

Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf  - 12 \\ \\ \sf 4 & \sf 0 \\ \\ \sf  - 3 & \sf 0\\ \\ \sf  \dfrac{1}{2}  & \sf  -  \dfrac{49}{4} \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points.

See the attachment graph.

Attachments:
Similar questions