Math, asked by sampathkumarjannu, 4 months ago

Draw the graph of the equation 3x + 4y = 12 and find the coordinates of the points of intersection where the graph intersects coordinate axes. Check from the graph that (-4,6) is a solution of the equation​

Answers

Answered by mathdude500
30

Gɪᴠᴇɴ :

Linear equation,

\begin{gathered}\bf\blue{3x\:+ \: 4\:y\:=\:12} \\ \end{gathered}

❶ Substituting 'x = 0' in the given equation, we get

\begin{gathered}:\implies\:\:\sf{3\times{0}\:+ \: 4\:y\:=\:12} \\ \end{gathered}

\begin{gathered}:\implies\:\:\sf{0\:+ \: 4\:y\:=\:12} \\ \end{gathered}

\begin{gathered}:\implies\:\:\bf{y\:=\:3} \\ \end{gathered}

❷ Substituting 'x = 2' in the given equation, we get

\begin{gathered}:\implies\:\:\sf{3\times{2}\:+ \: 4\:y\:=\:12} \\ \end{gathered}

\begin{gathered}:\implies\:\:\sf{6\:+ \: 4\:y\:=\:12} \\ \end{gathered}

\begin{gathered}:\implies\:\:\sf{\: 4\:y\:=\:12 \:  -  \: 6} \\ \end{gathered}

\begin{gathered}:\implies\:\:\sf{\: 4\:y\:=\:6} \\ \end{gathered}

\begin{gathered}:\implies\:\:\bf{y\:=\:1.5} \\ \end{gathered}

❸ Substituting 'y = 0' in the given equation, we get

\begin{gathered}:\implies\:\:\sf{4\times{0}\:+ \: 3\:x\:=\:12} \\ \end{gathered}

\begin{gathered}:\implies\:\:\sf{0\:+ \: 3\:x\:=\:12} \\ \end{gathered}

\begin{gathered}:\implies\:\:\bf{x\:=\:4} \\ \end{gathered}

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x &amp; \bf y \\ \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf 0 &amp; \sf 3 \\ \\ \sf 2 &amp; \sf 1.5 \\ \\ \sf 4 &amp; \sf 0 \end{array}} \\ \end{gathered}</p><p>

➢ Now draw graph using the points (0 , 3), (2 , 1.5) & (4 , 0)

➢ See the attachment graph.

☆ Hence, (- 4, 6) lies on the graph.

Attachments:
Answered by jaskiratsinghsethi64
2

Answer:

Step-by-step explanation:

Gɪᴠᴇɴ :

Linear equation,

❶ Substituting 'x = 0' in the given equation, we get

❷ Substituting 'x = 2' in the given equation, we get

❸ Substituting 'y = 0' in the given equation, we get

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation is shown in the below table.

➢ Now draw graph using the points (0 , 3), (2 , 1.5) & (4 , 0)

➢ See the attachment graph.

☆ Hence, (- 4, 6) lies on the graph.

Similar questions