Math, asked by mithudebnath976, 13 days ago

Draw the graph of the equation x+2y-3=0 From the graph, find the value of y when (i) x=2 (ii) x=−2​

Answers

Answered by amansharma264
8

EXPLANATION.

Graph of the equation.

⇒ x + 2y - 3 = 0.

As we know that,

Put the value of x = 0 in the equation, we get.

⇒ (0) + 2y - 3 = 0.

⇒ 2y = 3.

⇒ y = 3/2.

⇒ y = 1.5.

Their Co-ordinates = (0,1.5).

Put the value of y = 0 in the equation, we get.

⇒ x + 2(0) - 3 = 0.

⇒ x - 3 = 0.

⇒ x = 3.

Their Co-ordinates = (3,0).

To find value of y :

⇒ (1) = When x = 2.

Put the value of x = 2 in the equation, we get.

⇒ (2) + 2y - 3 = 0.

⇒ 2y - 1 = 0.

⇒ 2y = 1.

⇒ y = 1/2.

(2) = When x = - 2.

Put the value of x = - 2 in the equation, we get.

⇒ (-2) + 2y - 3 = 0.

⇒ - 2 + 2y - 3 = 0.

⇒ 2y - 5 = 0.

⇒ 2y = 5.

⇒ y = 5/2.

Attachments:
Answered by TrustedAnswerer19
26

★ Given,

  • A linear equation x + 2y - 3 = 0 ------(1)

It can be written as :

 \bf \: y =  \frac{3 - x}{2}  \:  \:  \:  -  -  - (2)

★ We have to draw the graph and find the value of y when (i) x = 2 (ii) x = −2

Solution :

 \underline{ \bf \: drawing \: graph}

→ To draw a linear graph we need at least two co-ordinates which lies on the equation.

→ Finding 1st co-ordinates :

Let, x = 1 and put this value in eqn.(1)

 \bf \: 1 + 2y - 3 = 0 \\ \rm \implies \:  2y - 2 = 0 \\ \rm \implies \:  2y = 2 \\ \rm \implies \:  y =  \frac{2}{2}  \\ \rm \implies \:  y = 1

So, co-ordinates is (1,1)

→ Finding 2nd co-ordinates :

Let, x = - 1 and put this value in eqn. (1)

 \rm \:  - 1 + 2y - 3 = 0 \\ \rm \implies \:  2y - 4 = 0 \\ \rm \implies \:  2y = 4 \\ \rm \implies \:  y =  \frac{4}{2}  \\ \rm \implies \:  y = 2

So, co-ordinates is (-1,2)

Now if we add this two points we will get the graph of the equation.

 \underline{ \bf \: finding \: value \: of \: \:  y}

To find value of y we have to put the value of x in eqn.(2)

{ \boxed{\boxed{\begin{array}{c | c} \bf \: value \: of \:  \: x& \bf \:  value \: of \: y  \\  \\ \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } & \:   \underline{\bf \: y =  \frac{3 - x}{2 }} \\  \\  \pink{ \bf \:(i)\:\:\: x = 2}&  \pink{\bf \: y =  \frac{3 - 2}{2}  =  \frac{1}{2}} \\  \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }&\underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\  \\   \blue{\bf \:(ii)\:\: x =  - 2}&  \blue{\bf \: y =  \frac{ 3 + 2}{2}  =  \frac{5}{2} } \end{array}}}}

Attachments:
Similar questions