Math, asked by ayushiv0795041, 1 month ago

Draw the graph of the equations x - y +1 = 0 and 3x +2y -12 = 0. Using this graph, find the values of x and y which satisfy both the equations​

Answers

Answered by amansharma264
32

EXPLANATION.

Graph of the equations.

⇒ x - y + 1 = 0. - - - - - (1).

⇒ 3x + 2y - 12 = 0. - - - - - (2).

As we know that,

From equation (1), we get.

⇒ x - y + 1 = 0. - - - - - (1).

Put the value of x = 0 in the equation, we get.

⇒ (0) - y + 1 = 0.

⇒ - y + 1 = 0.

⇒ y = 1.

Their Co-ordinates = (0,1).

Put the value of y = 0 in the equation, we get.

⇒ x - (0) + 1 = 0.

⇒ x + 1 = 0.

⇒ x = - 1.

Their Co-ordinates = (-1,0).

From equation (2), we get.

⇒ 3x + 2y - 12 = 0. - - - - - (2).

Put the value of x = 0 in the equation, we get.

⇒ 3(0) + 2y - 12 = 0.

⇒ 2y - 12 = 0.

⇒ 2y = 12.

⇒ y = 6.

Their Co-ordinates = (0,6).

Put the value of y = 0 in the equation, we get.

⇒ 3x + 2(0) - 12 = 0.

⇒ 3x - 12 = 0.

⇒ 3x = 12.

⇒ x = 4.

Their Co-ordinates = (4,0).

Both curves intersects at a point = (2,3).

Put the value of (x, y) = (2,3) in equation (1), we get.

⇒ x - y + 1 = 0.

⇒ 2 - 3 + 1 = 0.

⇒ 3 - 3 = 0.

⇒ 0 = 0.

Put the value of (x, y) = (2,3) in equation (2), we get.

⇒ 3x + 2y - 12 = 0.

⇒ 3(2) + 2(3) - 12 = 0.

⇒ 6 + 6 - 12 = 0.

⇒ 12 - 12 = 0.

⇒ 0 = 0.

Values of the (x, y) = (2,3).

Attachments:
Answered by Itzheartcracer
22

Given :-

x - y + 1 = 0

3x + 2y - 12 = 0

To Find :-

x and y

Solution :-

x - y = 0 - 1

x - y = -1

Putting x as 0

0 - y = -1

-y = -1

y = 1

Coordinates = (0,1)

Putting y = 0

x - 0 = -1

x = -1

Coordinates = (-1,0)

Eq 2

3x + 2y - 12 = 0

3x + 2y = 0 + 12

3x + 2y = 12

Putting x = 0

3(0) + 2y = 12

0 + 2y = 12

2y = 12

y = 12/2

y = 6

Coordinates = (0,6)

Putting y = 0

3x + 2(0) = 12

3x + 0 = 12

3x = 12

x = 12/3

x = 4

Coordinates = (4,0)

Now

Both will intersect at (2,3)

Attachments:
Similar questions