Math, asked by guptaananya2005, 1 month ago

Draw the graph of the function f(x) = |x| + |x-1|

Please quality answer needed.

Moderators, Brainly Stars, Genius please answer it.
✓ Don't spam please. Its a humble request.

✓I have exam tomorrow.

$ Thank you Brainly for providing platform for education $​

Answers

Answered by nithish121
0

Step-by-step explanation:

I hope this helps you.

All the best for your exams.

Attachments:
Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) =  |x| +  |x - 1|

Let first define the function.

Here critical points are x = 0 and x = 1

We know,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x| =  \begin{cases} &\sf{ - x \:  \: if \: x \:  <  \: 0} \\ &\sf{ \:  \:  \: x \:  \: if \: x \:  \geqslant 0} \end{cases}\end{gathered}\end{gathered}

So, using this definition, f(x) is defined as

\begin{gathered}\begin{gathered}\bf\: f(x) = \begin{cases} &\sf{ - x - (x - 1) \:  \: when \: x \:  <  \: 0}  \\ \\ &\sf{x - (x - 1) \: when \: 0 \leqslant x < 1}\\ \\  &\sf{x + (x - 1) \:  \: when \: x \geqslant 1} \end{cases}\end{gathered}\end{gathered}

So,

\begin{gathered}\begin{gathered}\bf\: f(x) = \begin{cases} &\sf{ - 2x + 1 \:  \: when \: x \:  <  \: 0}  \\ \\ &\sf{ \:  \: 1 \:  \:  \:  \:  \:  \: when \: 0 \leqslant x < 1}\\ \\  &\sf{2x- 1 \:  \: when \: x \geqslant 1} \end{cases}\end{gathered}\end{gathered}

So, we have three cases now.

Case :- 1

\red{\rm :\longmapsto\:y = f(x) = - 2x + 1 \:  \: when \: x < 0}

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf  - 1 & \sf 3 \\ \\ \sf  - 2 & \sf 5 \\ \\ \sf  - 3 & \sf 7 \end{array}} \\ \end{gathered}

Case :- 2

\red{\rm :\longmapsto\:y = f(x) =  1  \:  \: when \: 0 \leqslant x < 1}

Its a line parallel to x - axis passes through (0, 1)

Case :- 3

\red{\rm :\longmapsto\:y = f(x) = 2x -  1  \:  \: when \: x \geqslant 1}

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 1 & \sf 1 \\ \\ \sf 2 & \sf 3 \\ \\ \sf 3 & \sf 5 \end{array}} \\ \end{gathered}

Attachments:
Similar questions