Math, asked by bsaiuttejteja6462, 3 days ago

Draw the graph of y=2x+1 ,y= 2x and y=2x-1/2 are these parallel

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Consider,

\red{\rm :\longmapsto\:y = 2x + 1}

Substituting 'x = 0' in the given equation, we get

 \red{\rm :\longmapsto\:y = 0 + 1}

 \red{\rm :\longmapsto\:y = 1}

Substituting 'x = 1' in the given equation, we get

\red{\rm :\longmapsto\:y = 2 + 1}

\red{\rm :\longmapsto\:y = 3}

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 1 \\ \\ \sf 1 & \sf 3 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points

➢ See the attachment graph.

Consider,

\blue{\rm :\longmapsto\:y = 2x}

Substituting 'x = 0' in the given equation, we get

\blue{\rm :\longmapsto\:y = 2 \times 0}

\blue{\rm :\longmapsto\:y = 0}

Substituting 'x = 1' in the given equation, we get

\blue{\rm :\longmapsto\:y = 2 \times 1}

\blue{\rm :\longmapsto\:y = 2}

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 0 \\ \\ \sf 1 & \sf 2 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points

➢ See the attachment graph.

Consider,

\green{\rm :\longmapsto\:y = 2x - \dfrac{1}{2}}

Substituting 'x = 0' in the given equation, we get

\green{\rm :\longmapsto\:y = 2 \times 0 - \dfrac{1}{2}}

\green{\rm :\longmapsto\:y =  - \dfrac{1}{2}}

\green{\rm :\longmapsto\:y =  - 0.5}

Substituting 'x = 1' in the given equation, we get

\green{\rm :\longmapsto\:y = 2 \times 1 - \dfrac{1}{2}}

\green{\rm :\longmapsto\:y = 2 - \dfrac{1}{2}}

\green{\rm :\longmapsto\:y = \dfrac{3}{2}}

\green{\rm :\longmapsto\:y = 1.5}

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf  - 0.5 \\ \\ \sf 2 & \sf 1.5 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points

➢ See the attachment graph.

Now, From graph,

  • we concluded that given lines are parallel.

Attachments:
Similar questions