Math, asked by siddharth4211, 1 month ago

Draw the graph of y= mod x+ 1​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given function is

\red{\rm :\longmapsto\:y =  |x|  + 1}

Let first define the function,

We know,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x| =  \begin{cases} &\sf{x \:  \: when \: x  \geqslant  0} \\ &\sf{ - x \: when \: x  <  0} \end{cases}\end{gathered}\end{gathered}

So,

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: |x|  + 1=  \begin{cases} &\sf{x + 1 \:  \: when \: x  \geqslant  0} \\ &\sf{ - x + 1 \: when \: x  <  0} \end{cases}\end{gathered}\end{gathered}

So, it means,

 \red{\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\: y = |x|  + 1=  \begin{cases} &\sf{x + 1 \:  \: when \: x  \geqslant  0} \\ &\sf{ - x + 1 \: when \: x  <  0} \end{cases}\end{gathered}\end{gathered}}

Now,

Consider

\rm :\longmapsto\:y = x + 1 \:  \: when \: x \:  \geqslant 1

Substituting 'x = 0' in the given equation, we get

\rm :\longmapsto\:y = 0 + 1

\rm :\longmapsto\:y =1

Substituting 'x = 1' in the given equation, we get

\rm :\longmapsto\:y = 1 + 1

\rm :\longmapsto\:y = 2

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 1 \\ \\ \sf 1 & \sf 2 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points

➢ See the attachment graph.

Consider,

\rm :\longmapsto\:y =  - x + 1 \:  \: when \: x < 0

Substituting 'x = - 1' in the given equation, we get

\rm :\longmapsto\:y = 1 + 1

\rm :\longmapsto\:y = 2

Substituting 'x = - 2' in the given equation, we get

\rm :\longmapsto\:y = 2 + 1

\rm :\longmapsto\:y = 3

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf  - 1 & \sf 2 \\ \\ \sf  - 2 & \sf 3 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points

➢ See the attachment graph.

Attachments:
Similar questions