Math, asked by unknoweh, 7 days ago

Draw the graph of y= -x2-2x+3 and verify the zeroes using algebraic method

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given polynomial is

  \rm \: \longmapsto  \: y =   - {x}^{2}  - 2x + 3

To plot the graph of the quadratic polynomial which is always parabola, the following steps have to be followed :-

Step :- 1 Vertex of parabola

We know, vertex of parabola of quadratic polynomial ax² + bx + c is given by

\blue{ \boxed{\bf \:Vertex = \bigg( - \dfrac{ b}{2a} , \: \dfrac{4ac - {b}^{2} }{4a} \bigg)}}

Here,

\rm :\longmapsto\:a =  - 1

\rm :\longmapsto\:b =  -2

\rm :\longmapsto\:c = 3

So, vertex is

\rm :\longmapsto\: \:Vertex = \bigg( - \dfrac{ ( - 2)}{2( - 1)} , \: \dfrac{4( - 1)(3) - {( - 2)}^{2} }{4( - 1)} \bigg)

\rm :\longmapsto\: \:Vertex = \bigg(  - 1 , \: 4\bigg)

Step :- 2

Point of intersection with x - axis

We know, on x - axis, y = 0.

So,

\rm :\longmapsto\: -  {x}^{2} - 2x + 3 = 0

\rm :\longmapsto\:{x}^{2}  + 2x - 3 = 0

\rm :\longmapsto\:{x}^{2}  + 3x - x - 3 = 0

\rm :\longmapsto\:x(x + 3) - 1(x + 3) = 0

\rm :\longmapsto\:(x + 3)(x - 1) = 0

\bf :\longmapsto\:x =  - 3 \:  \:  \:  \: or \:  \:  \:  \: x = 1

Hence,

The point of intersection with x- axis is (1, 0) and ( - 3, 0).

Now,

Point of intersection with y - axis.

We know, on y - axis, x = 0

So, on Substituting the value in given curve, we get

  \rm \: \longmapsto  \: y =   - {0}^{2}  - 2(0)+ 3

\rm :\longmapsto\:y = 3

Hence, the point of intersection with y- axis is (0, 3).

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 3 \\ \\ \sf 1 & \sf 0 \\ \\ \sf  - 3 & \sf 0\\ \\ \sf  - 1 & \sf 4 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points.

➢ See the attachment graph.

Now,

Verification Of zeroes,

From graph, we concluded that zeroes of the given polynomial are - 3 and 1.

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm :\longmapsto\: - 3 + 1 =  - \dfrac{( - 2)}{( - 1)}

\rm :\longmapsto\: - 2 =  - 2

Hence, Verified

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\longmapsto\: - 3  \times  1 = \dfrac{3}{ - 1}

\rm :\longmapsto\: - 3 =  - 3

Hence, Verified

Attachments:
Similar questions