Math, asked by ammu399, 7 months ago

) Draw the largest circle on a spherical mosambi with the help of compass. Then draw a circle on flat paper without changing the radius of the compass. The surface area of the cap peel and the area of the circle on flat paper are always equal. If the radius of the cap of peel of the mosambi is r and radius of the circle on flat paper is R, then find the ratio R/r.


Answers

Answered by heartbeat79
2

Answer:

 \frac{ \sqrt{ \sqrt[ |x {y {y { \frac{ {x { \frac{ \sqrt{\pie \beta \pi \beta e \beta  \cot( \beta \pi \alpha  \\ ) } }{?}  \times \frac{?}{?}  \times \frac{?}{?} }^{?} }^{2} }{?} }^{?} }^{?}  \times \frac{?}{?}  \times \frac{?}{?} }^{?} | ]{?} } }{?}  \times \frac{?}{?}  \times \frac{?}{?}  \times \frac{?}{?}  \times \frac{?}{?}  \times \frac{?}{?}  \times \frac{?}{?}  \times \frac{?}{?}  \times \frac{?}{?}  \times \frac{?}{?}  \times \frac{?}{?}  \times \frac{?}{?}  \times \frac{?}{?}  \times \frac{?}{?}

Similar questions