draw the metallic bond configuration and explain
Answers
Answer:
Metallic bonding may be described as the sharing of free electrons among a lattice of positively charged metal ions. The structure of metallic bonds is very different from that of covalent and ionic bonds. While ionic bonds join metals to nonmetals, and covalent bonds join nonmetals to nonmetals, metallic bonds are responsible for the bonding between metal atoms.
In metallic bonds, the valence electrons from the s and p orbitals of the interacting metal atoms delocalize. That is to say, instead of orbiting their respective metal atoms, they form a “sea” of electrons that surrounds the positively charged atomic nuclei of the interacting metal ions. The electrons then move freely throughout the space between the atomic nuclei.
Answer:
Explanation:
A metallic bond is a type of chemical bond formed between positively charged atoms in which the free electrons are shared among a lattice of cations. In contrast, covalent and ionic bonds form between two discrete atoms. Metallic bonding is the main type of chemical bond that forms between metal atoms.Metallic bonds are seen in pure metals and alloys and some metalloids. For example, graphene (an allotrope of carbon) exhibits two-dimensional metallic bonding. Metals, even pure ones, can form other types of chemical bonds between their atoms. For example, the mercurous ion (Hg22+) can form metal-metal covalent bonds. Pure gallium forms covalent bonds between pairs of atoms that are linked by metallic bonds to surrounding pairs.