Chemistry, asked by 8368033017R, 9 months ago

Draw the molecular orbitals formed by the s – s combination of atomic orbitals. Also illustrate the
electron densities for these orbitals and explain them.

Answers

Answered by krishana280897
1

The Molecular Orbital Theory, initially developed by Robert S. Mullikan, incorporates the wave like characteristics of electrons in describing bonding behavior. In Molecular Orbital Theory, the bonding between atoms is described as a combination of their atomic orbitals. While the Valence Bond Theory and Lewis Structures sufficiently explain simple models, the Molecular Orbital Theory provides answers to more complex questions. In the Molecular Orbital Theory, the electrons are delocalized. Electrons are considered delocalized when they are not assigned to a particular atom or bond (as in the case with Lewis Structures). Instead, the electrons are “smeared out” across the molecule. The Molecular Orbital Theory allows one to predict the distribution of electrons in a molecule which in turn can help predict molecular properties such as shape, magnetism, and Bond Order.

Introduction

Atoms form bonds by sharing electrons. Atoms can share two, four, or six electrons, forming single, double, and triple bonds respectively. Although it is impossible to determine the exact position of an electron, it is possible to calculate the probability that one will find the electron at any point around the nucleus using the Schrödinger Equation. This equation can help predict and determine the energy and spatial distribution of the electron, as well as the shape of each orbital. The figure below shows the first five solutions to the equation in a three dimensional space for a one electron atom. The colors show the phase of the function. In this diagram, blue stands for negative and red stands for positive. Note, however, that the 2s orbital has 2 phases, one of which is not visible because it is inside the other.

first five orbitals_dcylinder.jpg

Figure 1: Cartoons of the volume occupied by electrons in the 1s, 2s, and 2p hydrogen-like orbitals.

Principles of Molecular Orbital Theory

In molecules, atomic orbitals combine to form molecular orbitals which surround the molecule. Similar to atomic orbitals, molecular orbitals are wave functions giving the probability of finding an electron in certain regions of a molecule. Each molecular orbital can only have 2 electrons, each with an opposite spin. Each molecular orbital can only have 2 electrons, each with an opposite spin. Once you have the molecular orbitals and their energy ordering the ground state configuration is found by applying the Pauli principle, the aufbau principle and Hund's rule just as with atoms.

The principles to apply when forming pictorial molecular orbitals from atomic orbitals are su ( σ∗ ), the out of phase 1s orbitals interfere dest

Similar questions