Math, asked by pramilabarik81, 2 months ago

draw the polynomial p(x) = x to the power 2 -3x-4 on the graph and find the CO ordinate where it intersect at x axis??​

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given polynomial is

\red{ \boxed{ \rm{ \: \rm :\longmapsto\:p(x) =  {x}^{2} - 3x - 4}}}

Let assume that,

\rm :\longmapsto\:y =  {x}^{2} - 3x - 4

To plot the graph of the quadratic polynomial which is always parabola, the following steps have to be followed :-

Step :- 1 Vertex of parabola

We know, vertex of parabola of quadratic polynomial ax² + bx + c is given by

\blue{ \boxed{\bf \:Vertex = \bigg( - \dfrac{ b}{2a} , \: \dfrac{4ac - {b}^{2} }{4a} \bigg)}}

Here,

\rm :\longmapsto\:a = 1

\rm :\longmapsto\:b =  - 3

\rm :\longmapsto\:c =  - 4

So, vertex of quadratic polynomial is

\rm :\longmapsto\: \:Vertex = \bigg( - \dfrac{ ( - 3)}{2} , \: \dfrac{4(1)( - 4) - {( - 3)}^{2} }{4} \bigg)

\rm :\longmapsto\: \:Vertex = \bigg( \dfrac{3}{2} , \: \dfrac{ - 16 - {9}}{4} \bigg)

\rm :\longmapsto\: \:Vertex = \bigg( \dfrac{3}{2} , \: \dfrac{ - 25}{4} \bigg)

Step :- 2

Point of intersection with x - axis

We know, on x - axis, y = 0.

So, on substituting the value of y = 0, we get

\rm :\longmapsto\:  {x}^{2} - 3x - 4 = 0

\rm :\longmapsto\:  {x}^{2} - 4x  + x- 4 = 0

\rm :\longmapsto\:x(x - 4) + 1(x - 4) = 0

\rm :\longmapsto\:(x - 4)(x + 1) = 0

\rm :\implies\:x = 4 \:  \:  \: or \:  \:  \: x =  -  \: 1

Hence, the point of intersection with x- axis is (- 1, 0) and ( 4, 0).

Now,

Point of intersection with y - axis.

We know, on y - axis, x = 0

So, on Substituting the value in given curve, we get

\rm :\longmapsto\:  y = {0}^{2} - 3(0)- 4

\rm :\implies\:y =  - 4

Hence, the point of intersection with y- axis is (0, - 4).

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf  - 4 \\ \\ \sf  - 1 & \sf 0 \\ \\ \sf 4 & \sf 0\\ \\ \sf 1.5 & \sf  - 6.25 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points.

➢ See the attachment graph.

Attachments:
Similar questions