French, asked by Darling0001, 4 months ago

Draw the ray diagram of convex mirror when object is placed beyond centre of curvature. Also mention the nature, position and size of image

Answers

Answered by Fαírү
68

Correct Question:

⠀⠀⠀⠀

Draw the ray diagram of concave mirror when object is placed beyond centre of curvature. Also mention the nature, position and size of image.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

Diagram:

⠀⠀⠀⠀

\setlength{\unitlength}{0.7 cm}\begin{picture}(0,0)\thicklines\put(0,0){\line(1,0){12}}\qbezier(10.49,0)(10.5,1.8)(8.5,3.8)\qbezier(10.49,0)(10.5,-1.8)(8.5,-3.8)\put(7,0){\circle*{0.2}}\put(4,0){\circle*{0.2}}\put(2,0){\vector(0,1){1.5}}\linethickness{0.1mm}\put(2,1.5){\line(1,0){8.2}}\qbezier(10.2,1.5)(7,0)(3.8,-1.5)\put(2,1.5){\line(4,-3){6.77}}\thicklines\put(5.17,0){\vector(0,-1){0.85}}\put(6,1.496){\vector(1,0){0}}\put(6.3,1.496){\vector(1,0){0}}\put(4.2,-1.33){\vector(-3,-2){0}}\put(8,-2.96){\vector(3,-2){0}}\put(7.5,-2.64){\vector(-3,2){0}}\put(1.9,-0.5){\sf B}\put(1.9,1.7){\sf A}\put(3.7,-0.5){\sf C}\put(7.2,-0.5){\sf F}\put(5,-1.4){\sf A'}\put(5,0.2){\sf B'}\put(10.7,0.2){\sf P}\put(10.35,1.45){\sf D}\put(9,-4){\sf E}\end{picture}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

\dag\;{\underline{\frak{Nature\:of\:Image\::}}}\\ \\

Real, Inverted and small

Position: Between Center of Curvature (C) and Focus (F)

Size: Smaller than Object

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

\qquad\qquad\boxed{\underline{\underline{\pink{\bigstar \: \bf\: Additional\: Information\:\bigstar}}}}\\ \\

⌬ Image formation in Concave mirror:

⠀⠀⠀

\boxed{\begin{array}{cccc}\sf \pink{Position_{\:(object)}} &\sf \purple{Position_{\:(image)}} &\sf \red{Size_{\:(image)}} &\sf  \blue{Nature_{\:(image)}}\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\\\sf At \:Infinity &\sf At\: F&\sf Highly\:Diminished&\sf Real\:and\:Inverted\\\\\sf Beyond\:C &\sf Between\:F\:and\:C&\sf Diminished&\sf Real\:and\:Inverted\\\\\sf At\:C &\sf At\:C&\sf Same\:Size&\sf Real\:and\:Inverted\\\\\sf Between\:C\:and\:F&\sf Beyond\:C&\sf Enlarged&\sf Real\:and\;Inverted\\\\\sf At\:F&\sf At\:Infinity&\sf Highly\: Enlarged&\sf Real\:and\:Inverted\\\\\sf Between\:F\:and\:P&\sf Behind\:the\:mirror&\sf Enlarged&\sf Erect\:and\:Virtual\end{array}}


IdyllicAurora: Nice !!
Answered by Baby0001
0

Appropriate Question:

⠀⠀⠀⠀

Draw the ray diagram of concave mirror when object is placed beyond centre of curvature. Also mention the nature, position and size of image.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

Diagram:

⠀⠀⠀⠀

\setlength{\unitlength}{0.7 cm}\begin{picture}(0,0)\thicklines\put(0,0){\line(1,0){12}}\qbezier(10.49,0)(10.5,1.8)(8.5,3.8)\qbezier(10.49,0)(10.5,-1.8)(8.5,-3.8)\put(7,0){\circle*{0.2}}\put(4,0){\circle*{0.2}}\put(2,0){\vector(0,1){1.5}}\linethickness{0.1mm}\put(2,1.5){\line(1,0){8.2}}\qbezier(10.2,1.5)(7,0)(3.8,-1.5)\put(2,1.5){\line(4,-3){6.77}}\thicklines\put(5.17,0){\vector(0,-1){0.85}}\put(6,1.496){\vector(1,0){0}}\put(6.3,1.496){\vector(1,0){0}}\put(4.2,-1.33){\vector(-3,-2){0}}\put(8,-2.96){\vector(3,-2){0}}\put(7.5,-2.64){\vector(-3,2){0}}\put(1.9,-0.5){\sf B}\put(1.9,1.7){\sf A}\put(3.7,-0.5){\sf C}\put(7.2,-0.5){\sf F}\put(5,-1.4){\sf A'}\put(5,0.2){\sf B'}\put(10.7,0.2){\sf P}\put(10.35,1.45){\sf D}\put(9,-4){\sf E}\end{picture}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

\dag\;{\underline{\frak{Nature\:of\:Image\::}}}\\ \\

Real, Inverted and small

Position: Between Center of Curvature (C) and Focus (F)

Size: Smaller than Object

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

\qquad\qquad\boxed{\underline{\underline{\pink{\bigstar \: \bf\: Additional\: Information\:\bigstar}}}}\\ \\

⌬ Image formation in Concave mirror:

⠀⠀⠀

\boxed{\begin{array}{cccc}\sf \pink{Position_{\:(object)}} &\sf \purple{Position_{\:(image)}} &\sf \red{Size_{\:(image)}} &\sf  \blue{Nature_{\:(image)}}\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\\\sf At \:Infinity &\sf At\: F&\sf Highly\:Diminished&\sf Real\:and\:Inverted\\\\\sf Beyond\:C &\sf Between\:F\:and\:C&\sf Diminished&\sf Real\:and\:Inverted\\\\\sf At\:C &\sf At\:C&\sf Same\:Size&\sf Real\:and\:Inverted\\\\\sf Between\:C\:and\:F&\sf Beyond\:C&\sf Enlarged&\sf Real\:and\;Inverted\\\\\sf At\:F&\sf At\:Infinity&\sf Highly\: Enlarged&\sf Real\:and\:Inverted\\\\\sf Between\:F\:and\:P&\sf Behind\:the\:mirror&\sf Enlarged&\sf Erect\:and\:Virtual\end{array}}

#Mark Above Answer as Brainliest

Similar questions