Physics, asked by malikahamed4027, 1 year ago

Draw velocity - time graph for an uniformly accelerated object . Using velocity - time graph , derive v = u + at

Answers

Answered by papireddyyeruva578
3

Answer:

Derive v = u + at by Graphical MethodConsider the velocity – time graph of a body shown in the below Figure.Velocity–Time graph to derive the equations of motion.The body has an initial velocity u at point Aand then its velocity changes at a uniform rate from A to B in time t. In other words, there is a uniform acceleration 'a' from A to B, and after time t its final velocity becomes 'v' which is equal to BC in the graph. The time t is represented by OC. To complete the figure, we draw the perpendicular CB from point C, and draw AD parallel to OC. BE is the perpendicular from point B to OE.Now, Initial velocity of the body, u=OA...... (1)And, Final velocity of the body, v=BC........ (2)But from the graph BC=BD + DCTherefore, v=BD + DC ......... (3)Again DC=OASo, v=BD + OANow, From equation (1), OA=uSo, v=BD + u ........... (4)We should find out the value of BD now. We know that the slope of a velocity – time graph is equal to acceleration, a.Thus, Acceleration, a=slope of line ABor a=BD/ADBut AD=OC = t,so putting t in place of AD in the above relation, we get:a=BD/tor BD=atNow, putting this value of BD in equation (4) we get :v=at + uThis equation can be rearranged to give:v=u + at

Similar questions