Math, asked by kartik3447, 11 months ago

drea on the shaded region.
OR
In the figure PQ and RS are the two perpendicular diameters of the circle
with centre 'O. If OP = 28 cm, find the area of the shaded region.​

Answers

Answered by mayanksrivastav1
2

Answer:

fig. is in the attachment]

Given: 

Radius of larger circle,(OA) R = 7 cm

Diameter of smaller circle,(OD) = 7 cm

Radius of smaller  circle = 7/2 cm

Height of ΔBCA( OC) = 7 cm

Base of ΔBCA ( AB )= 14 cm

Area of ΔBCA = 1/2 × base × height

Area of ΔBCA = 1/2 × AB × OC = 1/2 × 7 × 14 = 49 cm²

Area of larger semicircle with radius (OA)7 cm = 1/2 ×π ×7²= 1/2 ×22/7 ×7×7 = 77 cm²

Area of smaller circle with radius 7/2 cm = πr²= 22/7 × 7/2 × 7/2 = 77/2 cm² 

Area of the shaded region =Area of smaller circle with radius 7/2 cm +Area of larger semicircle with radius 7 cm - Area of ΔBCA 

Area of the shaded region = 77/2 + 77 - 49= 77/2 + 28 = (77 +56) /2= 133/2

Area of the shaded region = 66.5 cm²

========================================================

Hope this will help you.........

Answered by silentlover45
5

\underline\mathfrak{Given:-}

  • \: \: \: \: \: PQ \: \: and \: \: RS \: \: are \: \: perpendicular \: \: diameter

  • \: \: \: \: \: OP \: \: = \: \: {28cm}

\underline\mathfrak{To \: \: Find:-}

  • \: \: \: \: \: The \: \: area \: \: of \: the \: \: shaded \: \: region.?

\underline\mathfrak{Solutions:-}

  • \: \: \: \: \: \: \: The \: Ratio \: \: of \: \: circle \: \: is \: \: {28cm}

\: \: \: \: \: \: \: \underline{Area \: \: of \: \: circle \: \: = \: \: \pi \: {r}^{2}}

\: \: \: \: \: \: \: \: \: \leadsto \: \: \dfrac{22}{7} \: \times \: {28}^{2}

\: \: \: \: \: \: \: \: \: \leadsto \: \: \dfrac{22}{7} \: \times \: {784}

\: \: \: \: \: \: \: \: \: \leadsto \: \: {22} \: \times \: {112}

\: \: \: \: \: \: \: \: \: \leadsto \: \: {2464} \: {cm}^{2}

  • \: \: \: \: \: \underline{A \: \: rhombus \: \: of \: \: diagonal \: \: PQ \: \: and \: \: RS}

\: \: \: \: \: \leadsto {PQ} \: = \:  \: PO \: + \: QO

\: \: \: \: \: \leadsto {PQ} \: = \:  \: {28} \: + \: {28}

\: \: \: \: \: \leadsto {PQ} \: = \:  \: {56}

\: \: \: \: \: \leadsto {PQ} \: = \:  \: {RS} \: \: \: \: \: \: \: \: \: {(Diagonal \: \: of \: \: circle)}

  • \: \: \: \: \: \underline{Area \: \: of \: \: rhombus \: \: = \: \: \dfrac{1}{2} \: {(Diagonal \: {1} \: \: \times \: \: Diagonal \: {2})}}

\: \: \: \: \: \leadsto \: \: \dfrac{1}{2} \: {({PQ} \: \: \times \: \: {RS})}

\: \: \: \: \: \leadsto \: \: \dfrac{1}{2} \: {({56} \: \: \times \: \: {56})}

\: \: \: \: \: \leadsto \: \: \dfrac{1}{2} \: {({3136})}

\: \: \: \: \: \leadsto \: \: {1568} \: sq. \: unit.

  • \: \: \: \: \: \underline{The \: \: area \: \: of \: the \: \: shaded \: \: region \: \: = \: \: Area \: \: of \: \: circle - \: \: \dfrac{Area \: \: of \: \: rhombus}{2}}

\: \: \: \: \: \leadsto \: \: {2464} \: \: - \: \: \dfrac{1568}{2}

\: \: \: \: \: \leadsto \: \: \dfrac{896}{2}

\: \: \: \: \: \leadsto \: \: {448} \: {cm}^{2}

\: \: \: \: \: Hence,

\: \: \: \: \: The \: \: area \: \: of \: the \: \: shaded \: \: region \: \: is \: \: {448} \: {cm}^{2}

__________________________________

Similar questions