Physics, asked by vishalpal25, 11 months ago

Drive an expression for Kinetic and potentical
energy of an harmonic oscillation have
Show the total energy is conserved in Shin
Draw a graph for energy​

Answers

Answered by anu24239
5

SOLUTION

we \: know \: that \: for \: harmonic \: motion \\  \\ x = A \sin(wt)  \\  \\ du=  - f.dx \:  \\ where \: du \: is \: the \: potential \\ energy \: of \: the \: particle \\  \\ for \:simple \:  harmonic \: motion \: f =  - kx \\  \\ du = kx.dx \\ after \: indefinite \: integration \: we \: get \\  \\ u =  \frac{1}{2} k {x}^{2}  \\ \\  u =  \frac{1}{2} k {(A \sin(wt) })^{2} .........(1) \\  \\ v = Aw \cos(wt)  \\  \\ kinetic \: energy \:  =  \frac{1}{2} m {v}^{2}  \\ kinetic \: energy =  \frac{1}{2} m {(Aw \cos(wt) )}^{2} ......(2) \\  \\ add \: (1) \: and \: (2) \\ total \: energy =  \frac{1}{2} k {A}^{2}  {sin}^{2}( wt) +  \frac{1}{2}  {m}  {w}^{2}  {A}^{2}  {cos}^{2} (wt) \\  \\ for \: simple \: harmonic \: motion \\  \\ k = m {w}^{2}  \\  \\ we \: get \:  \\  \\ total \: energy =  \frac{1}{2} m {w}^{2}  {A}^{2} ( {cos}^{2} (wt) +  {sin}^{2} (wt)) \\  \\ total \: energy \:  =  \frac{1}{2} m {w}^{2}  {A}^{2} .....which \: is \: constant \\ or \: always \: remain \: same \\  \\

Attachments:
Similar questions