Science, asked by kris82, 7 months ago

Drive the equation of motoin msthmatically​

Answers

Answered by kumaranmolpandey1235
0

In case of uniform acceleration, there are three equations of motion which are also known as the laws of constant acceleration. Hence, these equations are used to derive the components like displacement(s), velocity (initial and final), time(t) and acceleration(a). ... The three equations are, v = u + at.

 \huge {\mathcal{\purple{g}\green{o}\pink{o}\blue{g}\purple{l}\green{e}\pink{d}}}

Answered by AbhiMr360
1

Answer:

First equation of Motion:

V = u + at

soln.

Consider a body of mass “m” having initial velocity “u”.Let after time “t” its final velocity becomes “v” due to uniform acceleration “a”.

Now we know that:

Acceleration = change in velocity/Time taken

=> Acceleration = Final velocity-Initial velocity / time taken

=> a = v-u /t

=>at = v-u

or v = u + at

This is the first equation of motion.

—————————————-

(2) Second equation of motion:

s = ut + 1/2 at^2

sol.

Let the distance travelled by the body be “s”.

We know that

Distance = Average velocity X Time

Also, Average velocity = (u+v)/2

.: Distance (t) = (u+v)/2 X t …….eq.(1)

Again we know that:

v = u + at

substituting this value of “v” in eq.(2), we get

s = (u+u+at)/2 x t

=>s = (2u+at)/2 X t

=>s = (2ut+at^2)/2

=>s = 2ut/2 + at^2/2

or s = ut +1/2 at^2

This is the 2nd equation of motion.

……………………………………………………………

(3) Third equation of Motion

v^2 = u^2 +2as

sol.

We know that

V = u + at

=> v-u = at

or t = (v-u)/a ………..eq.(3)

Also we know that

Distance = average velocity X Time

.: s = [(v+u)/2] X [(v-u)/a]

=> s = (v^2 – u^2)/2a

=>2as = v^2 – u^2

or v^2 = u^2 + 2as

This is the third equation of motion.

Similar questions