Social Sciences, asked by Euphoriakooky, 2 months ago

Due to not answering the questions
My influence is very low
please Help me and pleej follow
༎ຶ‿༎ຶ​

Attachments:

Answers

Answered by kimtaehyung21
12

Answer:

okay answer mine

Explanation:

Solution:-

\begin{gathered} \sf \bold{We \: have \: A = P(1 + \frac{R}{100} {)}} \mathbb{^{n} } \\ \sf \small \red{\:Principal(P) = 12600 } \\ \sf \small \red{Rate(R) = 10\%} \\ \sf \small \red{Number \: of \: years} \mathbb \red{(n) } \sf \small \red{ = 2}\end{gathered}

WehaveA=P(1+

100

R

)

n

Principal(P)=12600

Rate(R)=10%

Numberofyears(n)=2

\sf \orange{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 12600(1 + \frac{10}{100} {)}^{2} = 12600( \frac{11}{10 } {)}^{2} }=12600(1+

100

10

)

2

=12600(

10

11

)

2

\sf \orange{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = 12600 \times \frac{11}{10} \times \frac{11}{10} = 15246}=12600×

10

11

×

10

11

=15246

\sf{CI =A - P = 15246 - 12600 =2646}CI=A−P=15246−12600=2646

More:-

\sf \small{(i)Amount \: when \: interest \: is \: compunded annually}(i)Amountwheninterestiscompundedannually

\sf \small\orange{ = p( 1 + \frac{r}{100} {)}^{n} }=p(1+

100

r

)

n

\sf \small{(i)Amount \: when \: interest \: is \: compounded \: half \: yearly}(i)Amountwheninterestiscompoundedhalfyearly

\sf \small \orange{ = p(1 + \frac{r}{200} {)}^{2n} }=p(1+

200

r

)

2n

Answered by vikashpatnaik2009
2

Answer:

yes I will help you army

Similar questions