Math, asked by dnfjfj, 1 year ago

) Dula) allow)
6) What is the Nyquist frequency for the signal
X(t) = 3 cos 50 nt + 10 sin 300 nt -cos 100 nt?
a) 50 Hz
b) 100 Hz C 200 Hz
d) 300 Hz

Answers

Answered by sona2462
0

Answer:

The Nyquist frequency for the single X is 100Hz C 200 Hz

Answered by Yashraj2022sl
0

Answer:

Therefore,  the Nyquist frequency for the signal  is 300 Hz.

Step-by-step explanation:

Given that:

x(t) = 3 cos 50\pit + 10 sin 300\pit - cos 100\pit ….(1)

Let us assume that there are three frequencies present in the signal.

This signal may be represented as:

x(t) = A_{1} cos ω₁ t + A_{2} cos ω₂ t + A_{3} cos ω₃ t …(2)

where A_{1}, A_{2} and  A_{3}  are amplitudes and ω₁, ω₂ and ω₃ are angular frequencies.

Comparing (1) and (2), we get:

ω₁ = 50\pi radian/sec

ω₂ = 300\pi radian/sec

 ω₃ = 100\pi radian/sec

Therefore, F_{1} = ω₁/2\pi = \frac{50\pi }{2\pi } = 25 Hz

                  F_{2} = ω₂/2\pi = \frac{300\pi }{2\pi } = 150 Hz

                  F_{3} = ω₃/2\pi = \frac{100\pi }{2\pi } = 50 Hz

The highest frequency component of the given message signal will be

                 F_{max} = Max { F_{1} ,  F_{2} , F_{3}}

                          = Max { 25, 150, 50}

                          = 150 Hz.

Nyquist rate = 2 * F_{max}

Therefore, F_{S} = 2 x 150 = 300 Hz.

Hence, the Nyquist frequency for the signal  is 300 Hz.

#SPJ3

Similar questions