Dum h to 19no. Ka answer do .
I challenge you.
Attachments:
Answers
Answered by
1
[m/2 {2a+(m-1)d}]/[n/2 {2a+(n-1)}] = m²/n²,
[2a+(m-1)d]/[2a+(n-1)d] = m/n,
now put m=2n-1 & n=2m-1, We get
[2a+(2n-1-1)d]/[2a+(2m-1-1)d] = (2n-1)/(2m-1),
[2a+(2n-2)d]/[2a+(2n-2)d] = (2n-1)/(2m-1)
then
[a+(m-1)d]/[a+(n-1)d] = (2n-1)/(2m-1),
therefore
tm/tn = (2n-1)/(2m-1)
[since {a+(m-1)d}=tm & {a+(n-1)d}=tn]
hence proved
[2a+(m-1)d]/[2a+(n-1)d] = m/n,
now put m=2n-1 & n=2m-1, We get
[2a+(2n-1-1)d]/[2a+(2m-1-1)d] = (2n-1)/(2m-1),
[2a+(2n-2)d]/[2a+(2n-2)d] = (2n-1)/(2m-1)
then
[a+(m-1)d]/[a+(n-1)d] = (2n-1)/(2m-1),
therefore
tm/tn = (2n-1)/(2m-1)
[since {a+(m-1)d}=tm & {a+(n-1)d}=tn]
hence proved
Similar questions