Math, asked by mantrypadamou7jzr, 1 year ago

Dum hai toh yeh karo.
sec²x+sec²x(1-sec²x)-cosec²x+cosec²x(cosec²x-)
=
cot⁴x - tan⁴x(PROVE)

Answers

Answered by Avengers00
13
\underline{\underline{\Huge{\textbf{Question:}}}}
\sf \small{Prove \: that} \\   \sf \small{sec^{2}\, x+ sec^{2}\, x(1-sec^{2}\, x)-cosec^{2}\, x+ cosec^{2}\, x(cosec^{2}\, x-1)} \\  =  \sf \small{cot^{4}\, x - tan^{4}\, x}

\\

\underline{\underline{\Huge{\textbf{Solution:}}}}

\underline{\Large{\textsf{Step-1:}}}
\sf\textsf{Consider LHS}

\underline{\Large{\textbf{LHS =}}}

\small \sf sec^{2}\, x+ sec^{2}\, x(1-sec^{2}\, x)-cosec^{2}\, x+ cosec^{2}\, x(cosec^{2}\, x-1)

\underline{\Large{\textsf{Step-2:}}}
\sf\textsf{Rewrite terms in LHS using}\\ \sf\textbf{Distributive property of multiplication} \sf\textsf{ and Rearrange.}


\sf\textsf{Distributive property of multiplication}
\bigstar\: \boxed{\Large{\mathbf{a(b \pm c)\: =\: ab\: \pm ac}}}

\small \sf sec^{2}\, x+ sec^{2}\, x-sec^{4}\, x-cosec^{2}\, x+cosec^{4}\, x-cosec^{2}\, x

\small \sf 2sec^{2}\, x - sec^{4}\, x - 2cosec^{2}\, x+cosec^{4}\, x

\small \sf 2sec^{2}\, x - \left(sec^{2}\, x\right)^{2} - 2cosec^{2}\, x+\left(cosec^{2}\, x\right)^{2} –––[1]

\\

\underline{\Large{\textsf{Step-3:}}}
\sf\textsf{Express sec$^{2}$\, x in terms of tan$^{2}$\, x }\\\textsf{and cosec$^{2}$\, x in terms of cot$^{2}$\, x}
\sf\textsf{(As RHS contains tan and cot)}

\textbf{Using the Identities}
\bigstar\: \: \boxed{\Large{\mathbf{sec^{2}\, x - tan^{2}\, x = 1}}} \\ \boxed{\Large{\mathbf{cosec^{2}\, x - cot^{2}\, x = 1}}}

\implies \bf sec^{2}\, x = 1+tan^{2}\, x
\implies \bf cosec^{2}\, x = 1+cot^{2}\, x

\sf\textsf{Substitute in [1]}

\small \sf 2\left(1+tan^{2}\, x\right)- \left(1+tan^{2}\, x\right)^{2} - 2\left(1+cot^{2}\, x \right)+\left(1+cot^{2}\, x\right)^{2} –––[2]

\\

\underline{\Large{\textsf{Step-4:}}}
\sf\textsf{Simplify Equation [2]}

\sf\textsf{Using the Identity}
\bigstar\: \boxed{\Large{\mathbf{(a+b)^{2}\: = \: a^{2} + b^{2} - 2ab}}}

\implies \sf (1+tan^{2}\, x)^{2} = 1 + tan^{4}\, x - 2tan^{2}\, x
\implies \sf (1+cot^{2}\, x)^{2} = 1 + cot^{4}\, x - 2cot^{2}\, x

\sf\textsf{Substitute in [2]}

\small \sf 2\left(1+tan^{2}\, x\right)- \left(1+tan^{4}\, x - 2tan^{2}\, x\right) - 2\left(1+cot^{2}\, x \right)+\left(1+cot^{4}\, x-2cot^{2}\, x\right)

\small \sf 2+2tan^{2}\, x - \left(1+tan^{4}\, x - 2tan^{2}\, x\right) - 2 - 2cot^{2}\, x + \left(1+cot^{4}\, x - 2cot^{2}\, x\right)

\small \sf \cancel{2}+\cancel{2tan^{2}\, x} - \cancel{1}-tan^{4}\, x + \cancel{2tan^{2}\, x} - \cancel{2} - \cancel{2cot^{2}\, x} + \cancel{1}+cot^{4}\, x - \cancel{2cot^{2}\, x}

\sf cot^{4}\, x - tan^{4}\, x

\underline{\Large{\textbf{= RHS}}}

\underline{\Large{\textsf{Hence Proved}}}


mantrypadamou7jzr: SUPERB BRO!
Similar questions