Physics, asked by puliharini17, 5 months ago

Duration: 3:00:00 Time Left : 2:42:48
How long will it take sound waves to
travel the distance 'l' between two
points A and B if the air temperature
between them varies linearly from Tito
T2 ? The velocity of sound propagation
in air is given by v=avT, where a is
a constant.
(A) la VTT,​

Answers

Answered by MrAnonymous412
15

 \bigstar  \:  \: {  \underline{\underline{ \large \rm{Requiréd  \: Question :  - }}}}

How long will it take sound waves to travel the distance 'l' between two points A and B if the air temperature between them varies linearly from \rm{{T_1} to {T_2}} ? The velocity of sound propagation in air is given by v=a√T, where a is a constant.

 \bigstar  \:  \: {  \underline{\underline{ \large \rm{Answér :  - }}}}

➣  \red{  \:  \:  \:  \:  \: \sf\: t_{AB} \:  =  \frac{21}{a( \sqrt{T_2}  +  \sqrt{ T_1} )}}  \\

 \bigstar  \:  \: {  \underline{\underline{ \large \rm{Solutíon :  - }}}}

We know that,

➩ \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \: v \:   \:  \: =   \:  \: \frac{dx}{dt} \:  \:   = \:  \:   (\frac{dx}{dT}) \frac{dT}{dt}  \:  \:  =  \:  \:  \frac{1}{ (\frac{dt}{dx}) }  \frac{dT}{dT} ....................(1) \\

Given, v = a√T ..........................(2)

Now,

From 1 and 2,

 \:  \:  \:  \longrightarrow  \:  \:  \:  \sf a \:  =  (\frac{dx}{dT}) \frac{dT}{dt}  \\

From the figure, \sf{\frac{dT}{dx}  =  \frac{T _2 - T _1 }{1}}

 \:  \:  \:  \therefore \:  \:  \:  \sf   a \sqrt{T}  =  \frac{1}{T _2 - T _1 }   \: \frac{dT}{dt} \\

 \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \therefore \:  \:  \:  \sf   dt \:   =  \frac{1}{a(T _2 - T _1) }   \: \frac{dT}{ \sqrt{T} } \\

Integrating from A to B ,

 \sf \:  \:  \int_A ^{B_A}  \:  \: dt \:  = t_{AB} \:  =  \frac{1}{a(T_2 - T_1)} \:  \:  \int_{A_{(T_2)}} ^{B_{(T_2)}}  \frac{1}{  \sqrt{T}  }  = dT \\

➨ \:  \:  \:  \sf \: t_{AB} \:  \:  =  \frac{21}{a(T_2- T_1)} [ \sqrt{T} ] _{T_1} ^{T_2}  \\

➨ \:  \:  \:  \sf \: t_{AB} \:  \:  =  \frac{21}{a(T_2- T_1) (T_2 +  T_1)} \:  \:  \:  \:  [ \sqrt{T_2}  - \sqrt T_1]  \\

➯   \blue{\underline\blue { \: \boxed{\green{{   \sf\: t_{AB} \:  =  \frac{21}{a( \sqrt{T_2}  +  \sqrt{ T_1} )}}} }}} \\

Attachments:
Similar questions