Math, asked by rajnishk1604, 2 months ago

dx 9. x= A cos (nt + a), JEI N STER 791 A, QWERTGRI , (simple harmonic motion) का अवकल समीकरण बनाएँ। [Form the differential equation of simple harmonic motion given by x= A cos (nt + a), where n is fixed and A, a are parameters.)​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given curve is

\rm :\longmapsto\:x = A \: cos(nt + a)

On differentiating both sides w. r. t. t, we get

\rm :\longmapsto\:\dfrac{d}{dt}x =\dfrac{d}{dt} A \: cos(nt + a)

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}cosx \:  =  \:  -  \: sinx}}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dx}{dt} =  - A \: sin(nt + a)\dfrac{d}{dt}(nt + a)

\rm :\longmapsto\:\dfrac{dx}{dt} =  - A \: sin(nt + a)(n \times 1 + 0)

\rm :\longmapsto\:\dfrac{dx}{dt} =  - An \: sin(nt + a)

On differentiating both sides w. r. t. t, we get

\rm :\longmapsto\:\dfrac{d}{dt}\dfrac{dx}{dt} =  \dfrac{d}{dt}[- An \: sin(nt + a)]

\rm :\longmapsto\:\dfrac{ {d}^{2}x }{ {dt}^{2} } =  - An \: \dfrac{d}{dt}sin(nt + a)

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}sinx \:  =  \: cosx}}}

So, using this, we get

\rm :\longmapsto\:\dfrac{ {d}^{2}x }{ {dt}^{2} } =  - An \: cos(nt + a) \: \dfrac{d}{dt}(nt + a)

\rm :\longmapsto\:\dfrac{ {d}^{2}x }{ {dt}^{2} } =  -nx \:(n \times 1 + 0) \:  \:  \:  \:  \{ \because \: x = Acos(nt + a) \}

\rm :\longmapsto\:\dfrac{ {d}^{2}x }{ {dt}^{2} } =  -nx \times n

\rm :\longmapsto\:\dfrac{ {d}^{2}x }{ {dt}^{2} } =  - {n}^{2} x

\rm\implies \:\boxed{\tt{ \:  \:  \dfrac{ {d}^{2}x }{ {dt}^{2} } + {n}^{2} x = 0 \:  \: }} \\

is the required differential equation.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by EmperorSoul
0

\large\underline{\sf{Solution-}}

Given curve is

\rm :\longmapsto\:x = A \: cos(nt + a)

On differentiating both sides w. r. t. t, we get

\rm :\longmapsto\:\dfrac{d}{dt}x =\dfrac{d}{dt} A \: cos(nt + a)

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}cosx \:  =  \:  -  \: sinx}}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dx}{dt} =  - A \: sin(nt + a)\dfrac{d}{dt}(nt + a)

\rm :\longmapsto\:\dfrac{dx}{dt} =  - A \: sin(nt + a)(n \times 1 + 0)

\rm :\longmapsto\:\dfrac{dx}{dt} =  - An \: sin(nt + a)

On differentiating both sides w. r. t. t, we get

\rm :\longmapsto\:\dfrac{d}{dt}\dfrac{dx}{dt} =  \dfrac{d}{dt}[- An \: sin(nt + a)]

\rm :\longmapsto\:\dfrac{ {d}^{2}x }{ {dt}^{2} } =  - An \: \dfrac{d}{dt}sin(nt + a)

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}sinx \:  =  \: cosx}}}

So, using this, we get

\rm :\longmapsto\:\dfrac{ {d}^{2}x }{ {dt}^{2} } =  - An \: cos(nt + a) \: \dfrac{d}{dt}(nt + a)

\rm :\longmapsto\:\dfrac{ {d}^{2}x }{ {dt}^{2} } =  -nx \:(n \times 1 + 0) \:  \:  \:  \:  \{ \because \: x = Acos(nt + a) \}

\rm :\longmapsto\:\dfrac{ {d}^{2}x }{ {dt}^{2} } =  -nx \times n

\rm :\longmapsto\:\dfrac{ {d}^{2}x }{ {dt}^{2} } =  - {n}^{2} x

\rm\implies \:\boxed{\tt{ \:  \:  \dfrac{ {d}^{2}x }{ {dt}^{2} } + {n}^{2} x = 0 \:  \: }} \\

is the required differential equation.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions