dx/dy; if y= (2x+9)/(5x-4)
Answers
Answered by
90
Given :-
- y = (2x + 9)(5x - 4) .
To Find :-
- The derivative of the given function .
Answer :-
Here , the given function given to us is ,
⇒ y = (2x + 9)/( 5x - 4 ) .
The given function is in the form of u/v , that is if ,
⇒ y = u/v , then
⇒ dy/dx = ( v. du/dx - u . dv/dx ) / v²
Here ,
- u = 2x + 9
- v = 5x - 4
So , that ,
⇒ dy/dx = (5x -4) d(2x+9)/dx - (2x+9) d(5x - 4)/v²
⇒ dy/dx = (5x - 4) × 2 - (2x + 9) × 5 / (5x-4)²
⇒ dy/dx = 10x - 8 -10x - 45 / (5x - 4)²
⇒ dy/dx = -53/ ( 5x - 4 )²
Hence the required derivative of the function is -53/(5x - 4)² .
Similar questions