Math, asked by mishraajay5133, 4 months ago

dx/ x⁴+x⁶ integrate the following

Answers

Answered by subhsamavartj
0

Answer:

I=∫  

x  

6

+1

x  

4

+1

​  

dx

=∫  

(x  

6

+1)

(x  

4

+1)

​  

×  

(x  

2

+1)

(x  

2

+1)

​  

dx

=∫  

(x  

6

+1)(x  

2

+1)

x  

6

+x  

2

+x  

4

+⊥

​  

dx

=∫  

(x  

6

+1)(x  

2

+1)

(x  

6

+1)+x  

2

(x  

2

+1)

​  

dx

=∫  

(x  

6

+1)(x  

2

+1)

(x  

6

+1)

​  

dx+∫  

(x  

6

+1)(x  

2

+1)

x  

2

(x  

2

+1)

​  

dx

=∫  

(x  

2

+1)

dx

​  

+  

3

1

​  

∫  

(x  

6

+1)

3x  

2

dx

​  

 

Put, x  

3

=t

⇒3x  

2

dx=dt

=∫  

(x  

2

+1)

dx

​  

+  

3

1

​  

∫  

(x  

3

)  

2

+1

3x  

2

dx

​  

 

=∫  

(x  

2

+1)

dx

​  

+  

3

1

​  

∫  

t  

2

+1

dt

​  

 

=tan  

−1

x+  

3

1

​  

tan  

−1

(t)+c

=tan  

−1

(x)+  

3

1

​  

tan  

−1

(x  

3

)+c.

Step-by-step explanation:

Attachments:
Similar questions