Math, asked by preetilatadwivedy09, 3 months ago

dy/1+y² =dx/1+x² solve it​

Answers

Answered by Anonymous
11

Required Answer =>

Given differential equation is dy/dx = (1 + y2)/(1 + x2)

= (1/(1 + y2)) dy = (1/(1 + x2)) dx

on, integrating, ∫(1/(1 + y2)) dx = ∫(1/(1 + x2)) dy

= tan-1 y = tan-1 x + c

= tan-1 y - tan-1 x = c

= tan-1 ((y - x)/(1 + yx)) = c

= (y - x)/(1 + yx) = tan c

∴ (y - x)/(1 + yx) = c(constant) is, the require solution

Hope it will helps:)

:)

Attachments:
Answered by mathdude500
3

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\dfrac{dy}{1 +  {y}^{2} }  = \dfrac{dx}{1 +  {x}^{2} }

On integrating both sides, we have

\rm :\longmapsto\: \displaystyle \int\dfrac{dy}{1 +  {y}^{2} }  = \displaystyle \int\dfrac{dx}{1 +  {x}^{2} }

\rm :\longmapsto\: {tan}^{ - 1} y =  {tan}^{ - 1} x +  {tan}^{ - 1} c

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{  \red{\bf \:  \because \: \displaystyle \int\dfrac{dx}{ {x}^{2} + 1 }  =  {tan}^{ - 1}x}}

\rm :\longmapsto\: {tan}^{ - 1} y  -   {tan}^{ - 1} x  =   {tan}^{ - 1} c

\rm :\longmapsto\: {tan}^{ - 1}c =  {tan}^{ - 1}\bigg( \dfrac{y - x}{1 + yx} \bigg)

  \:  \:  \:  \:  \: \boxed{ \red{ \sf \:  \because \: {tan}^{ - 1}x -  {tan}^{ - 1}y =  {tan}^{ - 1}\bigg(\dfrac{x  -  y}{1 + xy}  \bigg)}}

\rm :\implies\:c = \bigg( \dfrac{y - x}{1 + xy} \bigg)

\bf\implies \:y - x = c(1 + xy)

Additional Information :-

The linear differential equation is of the form

\rm :\longmapsto\:\dfrac{dy}{dx} + py = q \:  \: where \: p \: and \: q \:  \in \: f(x)

and following steps are used to solve the above differential equation

Step :- 1

Find Integrating Factor, which is evaluated as

\rm :\longmapsto\:IF =  {e}^{ \:  \: \displaystyle \int \: p \: dx}

Step :- 2

The solution of differential equation is

\rm :\longmapsto\:y \times IF = \displaystyle \int \: (q \times IF)dx

Similar questions